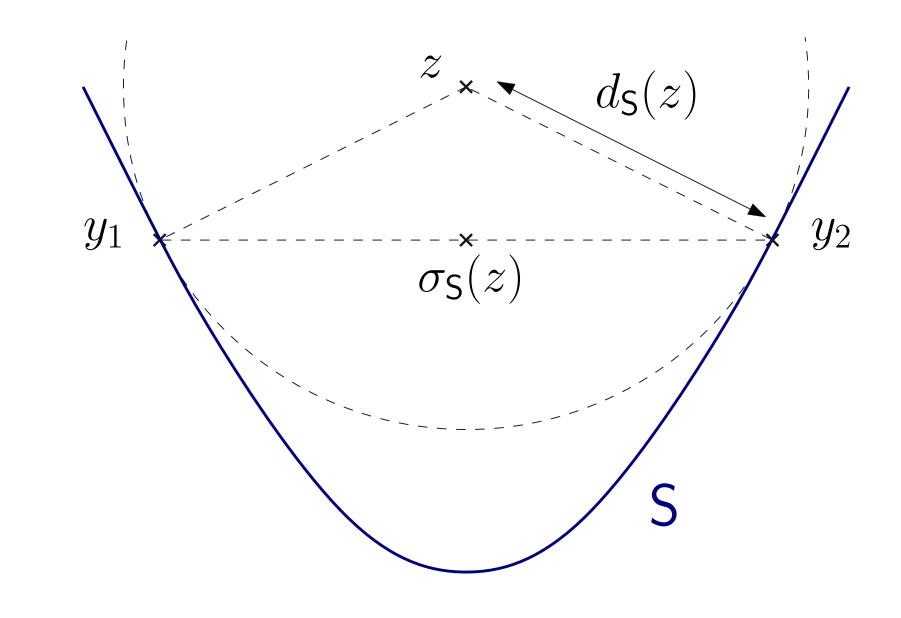
High-Level Summary

We are interested in C^2 compact submanifolds $M \subset \mathbb{R}^d$ and random finite samplings A \subset M, in the distance functions d_{M} and d_{A} and in their critical points and their persistence diagrams $dgm_i(M)$ and $dgm_i(A)$. These can be very irregular in general, but we show that they are well-behaved when M is generic.

Definitions

Let $\Pi_{S}(z)$ denote the set $\{x \in S : d(z, x) = d_{S}(z)\}$ of *projections* of z on a closed set S $\subset \mathbb{R}^d$, and let $\sigma_{S}(z)$ denote the projection of z onto the convex hull $Conv(\Pi_{S}(z))$. The generalized gradient of d_{S} is $\nabla d_{\mathsf{S}}(z) = \frac{z - \sigma_{\mathsf{S}}(z)}{d_{\mathsf{S}}(z)}$ if $z \notin \mathsf{S}$, and $\nabla d_{\mathsf{S}}(z) = 0$ if $z \in \mathsf{S}$. $\operatorname{Crit}(\mathsf{S}) := \{z \in \mathsf{S}\}$ $\mathbb{R}^{d} \setminus S : \nabla d_{S}(z) = 0$ is the set of *critical points* of S.



Genericity Theorem

For a generic C^2 submanifold M, i.e. for a dense and open set of embeddings of any abstract manifold with respect to the C^2 topology, $\operatorname{Crit}(\mathsf{M})$ and $\bigcup_{z \in \operatorname{Crit}(\mathsf{M})} \prod_{\mathsf{M}}(z)$ are well-behaved:

- (P1) (Non-degeneracy of the projections) For every $z_0 \in Crit(M)$, the projections $\pi_{M}(z_0)$ are the vertices of a non-degenerate simplex of \mathbb{R}^d and z_0 belongs to the relative interior of $\operatorname{Conv}(\pi_M(z_0))$.
- (P2) (Finiteness of Crit(M)) The set Crit(M) is finite.
- (P3) (Tangency condition) For every $z_0 \in \operatorname{Crit}(M)$ and every $x_0 \in \operatorname{Crit}(M)$ $\pi_{M}(z_{0})$, the sphere $S(z_{0}, d_{M}(z_{0}))$ is non-osculating M at x_{0} (i.e. it is not tangent of order 2).
- (P4) (Morse-like behaviour) d_{M} is a topological Morse function, and as such satisfies the Isotopy Lemma and the Handle Attachment Lemma.

 \rightarrow As a result, the Čech persistence diagram of degree i of M, $\operatorname{dgm}_i(M)$, is finite and can be entirely recovered from $\operatorname{Crit}(M)$: each point $z_0 \in Crit(M)$ of critical index *i* contributes to the birth of an *i*-cycle or to the death of an (i - 1)-cycle.

CRITICAL POINTS AND SAMPLING THEORY OF GENERIC SUBMANIFOLDS Charles Arnal¹, David Cohen-Steiner¹ & Vincent Divol² Datashape, Inria 1 & CREST, ENSAE 2

Stability Theorem

When M is generic, Crit(M) and $\bigcup_{z \in Crit(M)} \prod_M(z)$ are also stable, in the sense that for any $\varepsilon > 0$, any other embedding M' close enough to M for the C^2 topology is such that

- M' satisfies (P1-4).
- There is a bijection $\Psi : Crit(M) \rightarrow Crit(M')$.
- Let $z_0 \in Crit(M)$; then $\Psi(z_0) \in B(z_0, \varepsilon)$.
- Let $z_0 \in Crit(M)$ with $\pi_M(z_0) = \{x_1, \ldots, x_s\}$. Then $\pi_{M'}(\Psi(z_0))$ is included in the union of balls of radius ε centered at the x_i , with exactly one point in each ball.

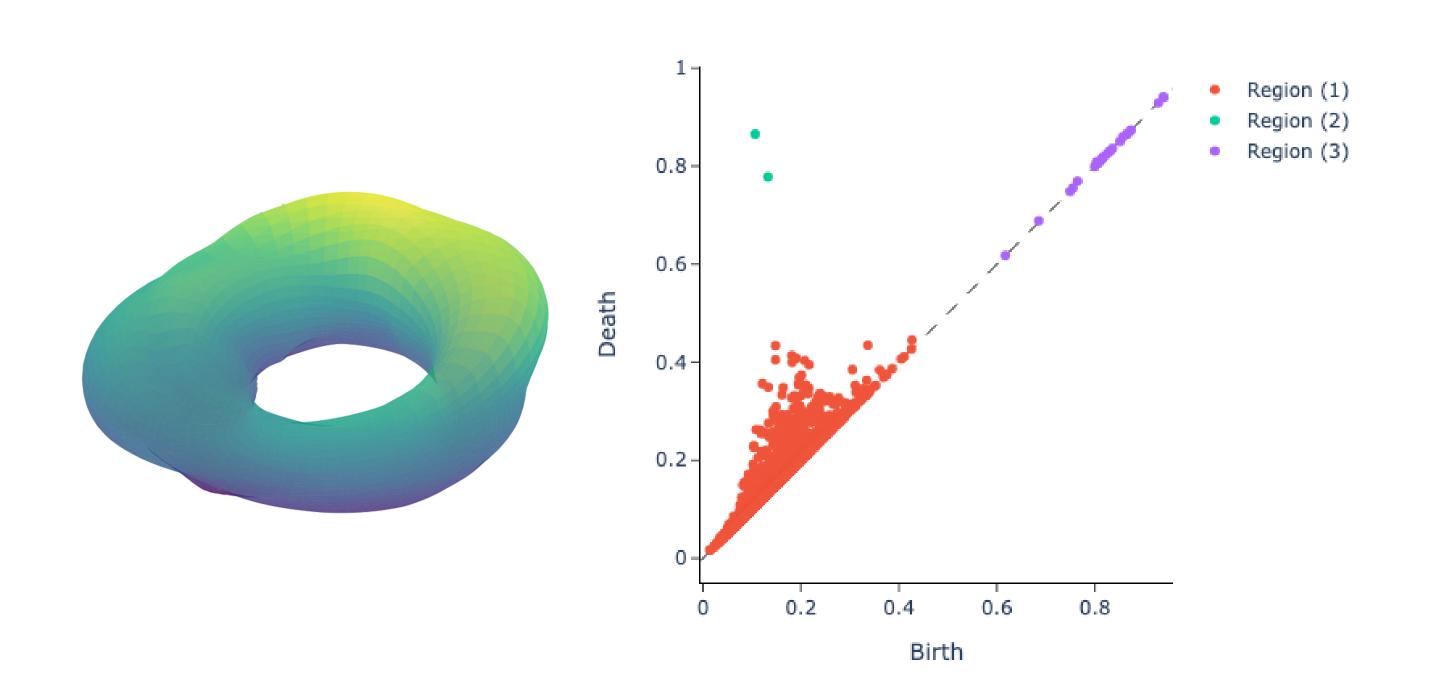


Figure: (Left) A generic torus. (Right) The (Čech) persistence diagram $dgm_1(A_n)$ of a set of $n = 10^4$ points sampled on a generic torus with some

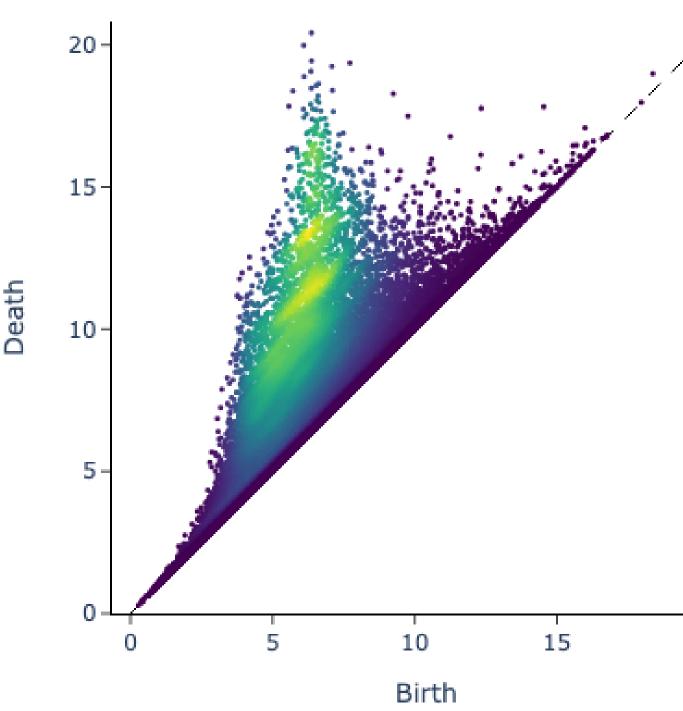


Figure: Zoom on Region 1: The limit measure $\mu_{P,1}$.

Persistence diagrams of subsamplings

Let A \subset M be a finite sampling s.t. $d_H(A, M) \leq \varepsilon$. $dgm_i(A)$ can be partitioned into three regions:

$$\operatorname{dgm}_{i}(\mathsf{A}) = \left(\operatorname{dgm}_{i}(\mathsf{A}) \cap \{u_{1}, u_{2} \leq \varepsilon\right)$$
$$\sqcup \left(\operatorname{dgm}_{i}(\mathsf{A}) \cap \{u_{1} \leq \varepsilon, u_{2} \leq \varepsilon\right)$$
$$\sqcup \left(\operatorname{dgm}_{i}(\mathsf{A}) \cap \{u_{1}, u_{2} \geq \tau\right)$$

where $\tau(M)$ is the reach of M.

bounded away from zero and infinity on M, then:

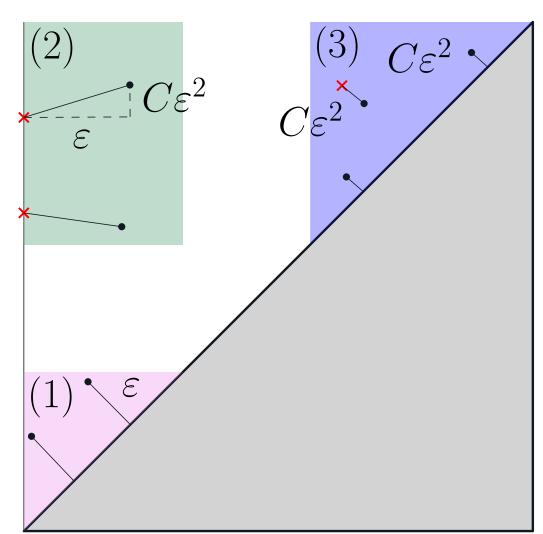
- distance.

$$\mathbb{E}[\max_{\substack{u \in \mathrm{dgm}_i^{(2)}(\mathsf{A}_n) \\ u \in \mathrm{dgm}_i^{(3)}(\mathsf{A}_n)}} ||u - u|]$$

Wasserstein convergence and total persistence:

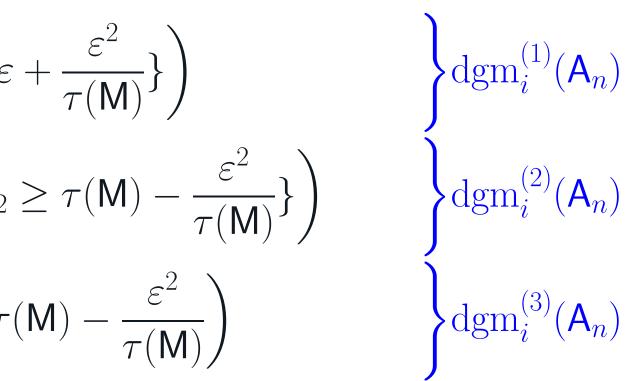
As a consequence, $\mathbb{E}[OT_p^p(dgm_i(A_n), dgm_i(M))] \to 0$ as $n \to \infty$ if p > m, and the total persistence $\operatorname{Pers}_{\alpha}(\operatorname{dgm}_{i}(\mathsf{A}_{n})) = \sum_{u \in \operatorname{dgm}_{i}(\mathsf{A}_{n})}(\frac{u_{2}-u_{1}}{2})^{\alpha}$ satisfies

 $\operatorname{Pers}_{\alpha}(\operatorname{dgm}_{i}(\mathsf{A}_{n})) = \operatorname{Pers}_{\alpha}(\operatorname{dgm}_{i}(\mathsf{M})) + n^{1-\frac{\alpha}{m}}C_{i,P,\mathsf{M}} + o_{L^{1}}(n^{1-\frac{\alpha}{m}}) + O_{L^{1}}\left(\left(\frac{\log n}{n}\right)^{\overline{m}}\right).$



References

- David Cohen-Steiner, Vincent Divol
- manifolds, Charles Arnal, David Cohen-Steiner, Vincent Divol



If $A = A_n$ is a random sampling drawn from a distribution P with a density

• (Region 1) Let $\mu_{n,i} = \frac{1}{n} \sum_{u \in \operatorname{dgm}_i^{(1)}(\mathsf{A}_n)} \delta_{n^{1/m}u}$. Then $\mathbb{E}[\operatorname{OT}_p^p(\mu_{n,i}, \mu_{P,i})] \xrightarrow[n \to \infty]{} 0$ for some limit measure $\mu_{P,i}$, where OT_p is a generalization of the Wasserstein

• (Regions 2 and 3) $\mathbb{E}[\#(\operatorname{dgm}_{i}^{(3)}(A_{n}))] = O(1)$, and there exists an optimal matching $\gamma_n : \operatorname{dgm}_i(A_n) \cup \partial\Omega \to \operatorname{dgm}_i(M) \cup \partial\Omega$ for the bottleneck distance such that $-\gamma_n(u)_2|] = O(n^{-2/m})$

 $\cdot \gamma_n(u) \|_{\infty}] = O(n^{-2/m}).$

Figure: The partition of the persistence diagram into three regions.

• Critical points of the distance function to a generic submanifold, Charles Arnal,

• Wasserstein convergence of Čech persistence diagrams for samplings of sub-