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1.The combinahedron
The combinahedron C(r, n) is the graph such that:
– the nodes are rearrangements of the word (1, . . . , 1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
r

, 2, . . . , n)

– two nodes are connected if and only they differ by two
adjacent entries.

It is a generalization of the well-known permutahedron. We can
embed the combinahedron [1] into a hyperplane of Rn such that
every edge has length
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Figure 1:The embedding of C(2, 4), from [1]

The polytope PC(r,n) obtained as the convex hull of the em-
bedding is a zonotope: it is the image of the (n2)-dimensional
hypercube into Rn by a linear map induced by

u ∶ f{i,j} ↦ {
ei − ej if 1 < i < j ≤ n

r(e1 − ej) if i = 1 and 1 < j ≤ n

with (fi,j){i,j}∈(n2) denoting the canonical base of R(
n
2) and

(ei)i∈[n] the canonical base of Rn.

Theorem (B+R.A. 2024): The polytope PC(r,n) tiles the
hyperplane it lives in.

2.Decomposition into
parallelepipeds

We can select some faces of the (n2)-dimensional hypercube to
tile a zonotope with parallelepipeds.

PC(r,n) = ⊔
S⊂([n]2 ), ∣S∣=n−1

u(S) independant set

u(ΠS)

with ΠS denoting the (n−1)-dimensional cube inside R(
n
2) along

the directions given by S. The volume is [2]:
Vol(PC(r,n)) = ∑

S⊂([n]2 ), ∣S∣=n−1
u(S) independant set

Vol(u(ΠS))

3.Correspondance with labeled
trees

To an independant set S ⊂ ([n]2 ), we can associate a labeled tree
TS:

parallelepipeds u(ΠS)
with S⊂([n]2 ),∣S∣=n−1

←→ labeled trees on
{1,...,n}

e2 − e3

e1 − e4

e1 − e2

1

2 3

4

We have Vol(u(ΠS)) = rdegTS
(1).

4.Prüfer sequences
Prüfer sequences [3] define a correspondance:

set of labeled trees on {1, . . . , n} ←→ set {1, . . . , n}n−2,

5.Computing the volume
We want to compute Vol(PC(r,n)) = ∑

T labeled tree
rdegT(1).

We can relate the degree of vertex 1 in the associated tree T to
the number of occurrences of the symbol 1 in the Prüfer sequence
ω:

∣ω∣1 + 1 = degT(1)

If we consider the monomial Xω1 × ⋅ ⋅ ⋅ ×Xωn−2 associated to the
word ω = ω1 . . . ωn−2 ∈ {1, . . . , n}n−2, replacing X1 by r and Xi

by 1 for i > 1 yields
rdegTω(1) = rXω1 × ⋅ ⋅ ⋅ ×Xωn−2(r, 1, . . . , 1)
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ωT = 1 1 6 6 2
r ⋅ X1 X1 X6 X6 X2
r ⋅ r r 1 1 1

Thus,
∑
T

rdegT(1) = r ∑
ω∈{1,...,n}n−2

Xω1 × ⋅ ⋅ ⋅ ×Xωn−2(r, 1, . . . , 1)

= r(X1 + ⋅ ⋅ ⋅ +Xn)n−2(r, 1, . . . , 1)

6.Volume of the combinahedron

Theorem (B+R.A. 2024): The volume of the combinahedron is Vol(PC(r,n)) = r(r + n − 1)n−2.

7.The volume of another zonotope
We can compute the volume of the zonotope P̂ (r1, . . . , rn) defined in [4] as the Minkozski sum ∑

i<j
rj[ei, ej]: it is the image of the

(n2)-dimensional hypercube by the linear map induced by u ∶ f{i,j} ↦ rj(ei − ej) if i<j.
In a similar way, we get V ol(P̂ (r1, . . . , rn)) = ∑

T labeled tree
r

d̂egT(1)
1 . . . r

d̂egT(n)
n where d̂egT(i) = ∣VoisT(i) ∩ [i]∣

We introduce another bijection similar to Prüfer sequences, called the dominant tree code:
set of labeled trees on {1, . . . , n} ←→ set {1, . . . , n}n−2

The word τT associated to the tree T satisfies a new property:
Evaluating the monomial rn ×X

(1)
τ1 × ⋅ ⋅ ⋅ ×X

(n−2)
τn−2 associated to τT on (X(j)i ← rmax(i,j+1))i,j yields r

d̂egT(1)
1 . . . r

d̂egT(n)
n .
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ωT = 6 1 1 6 2
r7 ⋅ X

(1)
6 X

(2)
1 X

(3)
1 X

(4)
6 X

(5)
2

r7 ⋅ r6 r3 r4 r6 r6

We get

∑
T labeled tree

r
d̂egT(1)
1 . . . r

d̂egT(n)
n = rn ∑

τ∈{1,...,n}n−2
X
(1)
τ1 × ⋅ ⋅ ⋅ ×X

(n−2)
τn−2 (X

(j)
i ← rmax(i,j+1))

= rn(X(1)1 + ⋅ ⋅ ⋅ +X
(1)
n ) × ⋅ ⋅ ⋅ × (X(n−2)1 + . . . X

(n−2)
n )(X(j)i ← rmax(i,j+1))

Theorem (B+R.A. 2024): Vol(P̂ (r1, . . . , rn)) = rn(2r2 + r3 + ⋅ ⋅ ⋅ + rn)(3r3 + r4 + ⋅ ⋅ ⋅ + rn) . . . ((n − 1)rn−1 + rn)

8.New tree coding:
symbols-edges correspondance

Both encodings yield a correspondance between the characters
of the sequence and the edges of the tree.

ϕP ∶ letters of ωT ⋅ n←→ edges of T

ϕD ∶ letters of τT ⋅ n←→ edges of T

such that:
– The oriented edge ϕP(i) in T̃P originates from node (ωT ⋅ n)i
– The oriented edge ϕD(i) in T̃D originates from the node

labeled max(i + 1, (ωT ⋅ n)i)
with two different orientations T̃P , T̃D on the tree T .
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Figure 2:Orientation T̃P of T as a rooted tree with root 7.

i 1 2 3 4 5 6
(ωT ⋅ n)i 1 1 6 6 2 7
ϕP(i) (1, 3) (1, 4) (6, 1) (6, 5) (2, 6) (7, 2)

7 2

5

6

4

1

3

Figure 3:Orientation T̃D of T such that i→ j if i > j

i 1 2 3 4 5 6
(τT ⋅ n)i 6 1 1 6 2 7
ϕD(i) (6, 1) (3, 1) (4, 1) (6, 5) (6, 2) (7, 2)

These properties are the key to getting the previous results.
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