FAST AND BIJECTIVE RIGID DIGITIZED TRANSFORMATIONS Stéphane Breuils, David Coeurjolly, Jacques-Olivier Lachaud

Bijective approaches

- Digitized transformation that leaves invariant discrete lines (reflection) or discrete circles (rotation),
- Characterize rigid transformations that are bijective after digitization,
- Find a bijective map that minimizes an error with respect to the real rigid transformation.

Contributions

- New bijective approaches : CBDR, OTC, CDLR
- Experimental results

Considered metrics

Time complexity and and image transformation time

Method	QSH	CDLR	BROT	CBDR	RBC	ОТ	OTC-k		
Image transf.	$\Theta(N^2)$	$\Theta(N^2)$	$\Theta(N^2)$	$\Theta(N^2)$	$\Theta(N^2)$	$O(N^8)$	$O(N^2 \log(N))$		
Precomp.	n.a.	n.a.	n.a.	Eq.(11)	$O(N^2)$	n.a.	$O(k^3N^5)$		
							OTC-2	OTC-3	OTC-4
Image transf. (ms)	2.7	43.5	3.8	3.8	3.5	$> 10^{5}$	15.9	16	16
Precomp. (ms)	0	0	0	5300	13	0	$4\cdot 10^5$	$7\cdot 10^5$	$13\cdot 10^5$

CDLR BROT RBC OTC-2 OTC-3 OTC-4 CBDR CDLR BROT RBC OTC-2 OTC-3 OTC-4 CBDR

Accuracy

• Average error

$$L_2(\mathsf{T},\alpha) := \sqrt{\frac{1}{\#D} \sum_{p \in D} \|\mathsf{T}(p) - \mathscr{R}_\alpha(p)\|^2}.$$

• Worst case error

$$L_{\infty}(\mathsf{T},\alpha) := \max_{p \in D} \|\mathsf{T}(p) - \mathscr{R}_{\alpha}(p)\|.$$

• Continuity error : with $N_8(p)$ the eight neighbour's of a pixel p

$$L_{c}(\mathbf{T}) := \sqrt{\frac{1}{8 \# D} \sum_{p \in D} \sum_{q \in N_{8}(p)} \|\mathbf{T}(p) - \mathbf{T}(q)\|^{2}}.$$

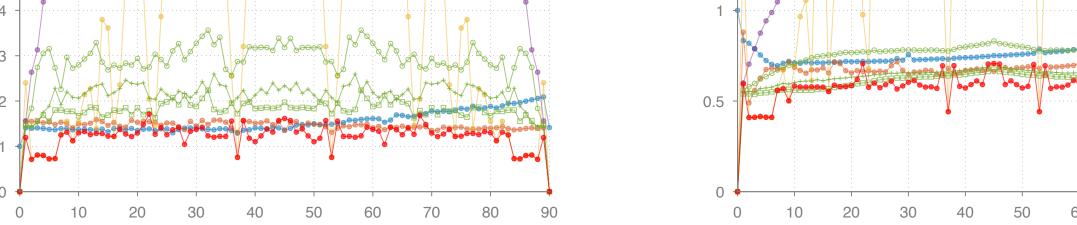
• Combination of the worst case error and the continuity error

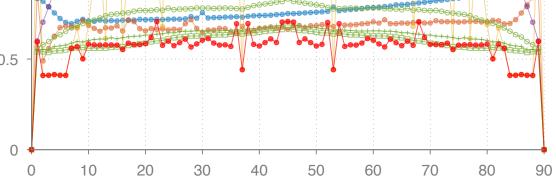
 $L_{\infty+\lambda c}(\mathsf{T},\alpha) := L_{\infty}(\mathsf{T},\alpha) + \lambda L_{c}(\mathsf{T}).$

Composition of Bijective Digitised Reflections (CBDR)

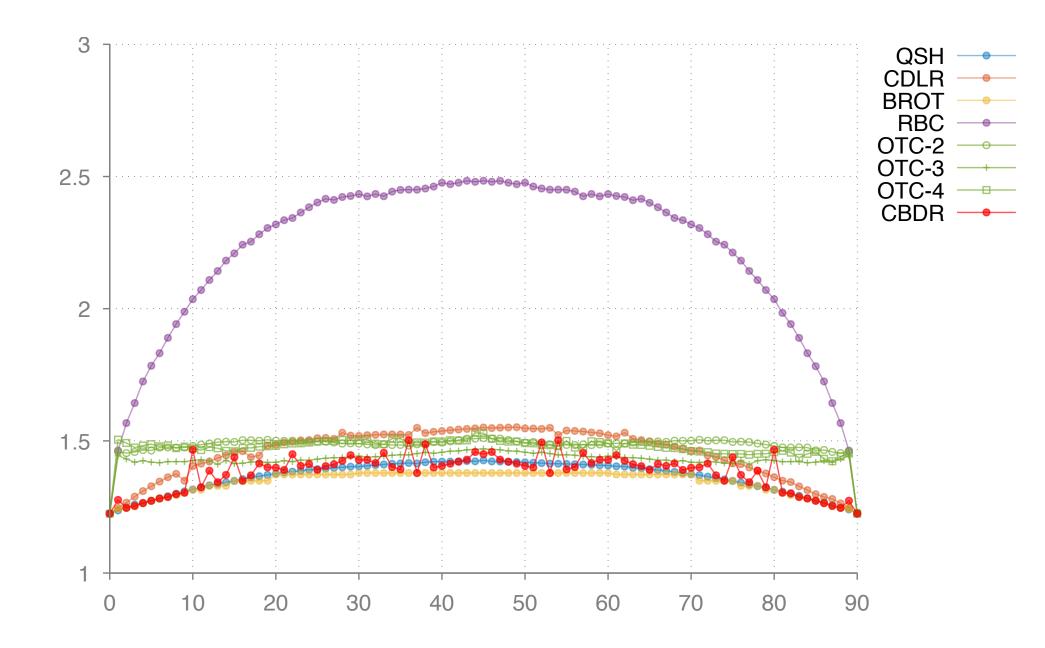
- Bijective digitized reflections
- Construct the set of composition of bijective digitized reflections (computationally expensive)
- Remove duplicates
- Find the nearest composition of bijective reflection as

$$\bar{C}^{k_{\max}}_{\alpha} := \arg\min_{\mathbf{m}\in C^{k_{\max}}_{\alpha}} L_*(\Pi^4_{i=1}(\mathcal{D} \circ -\mathbf{m}_i\mathbf{p}\mathbf{m}_i^{-1}), \alpha),$$
$$\mathbf{m}\in C^{k_{\max}}_{\alpha}$$



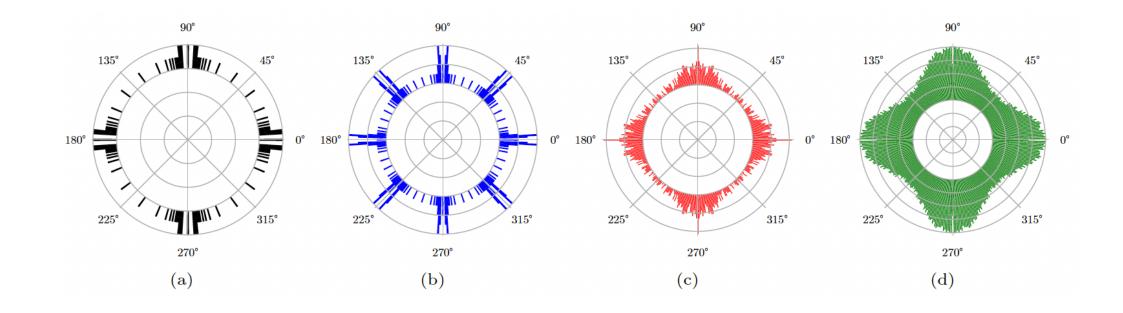


Continuity



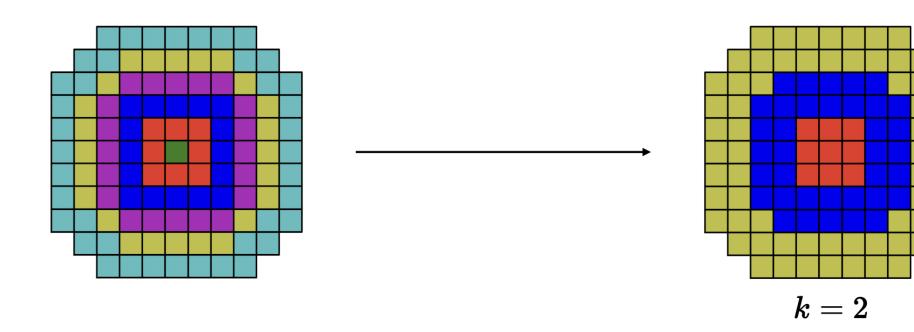
lincrease image size

Resulting distribution:



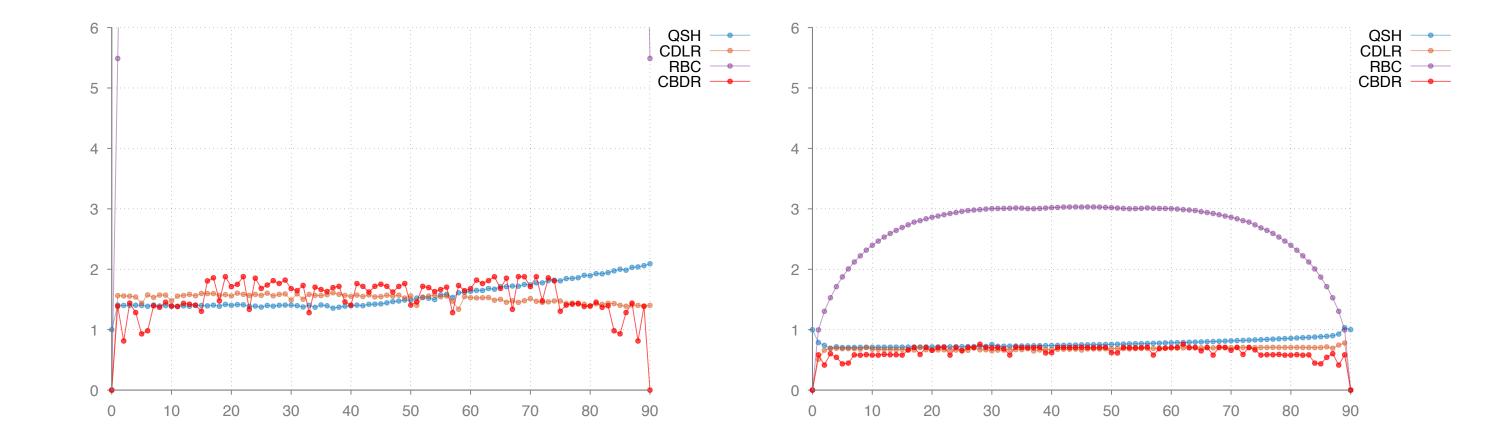
Optimal Transport by Circle (OTC)

• Idea : Group concentric circles into k-tuples D^i

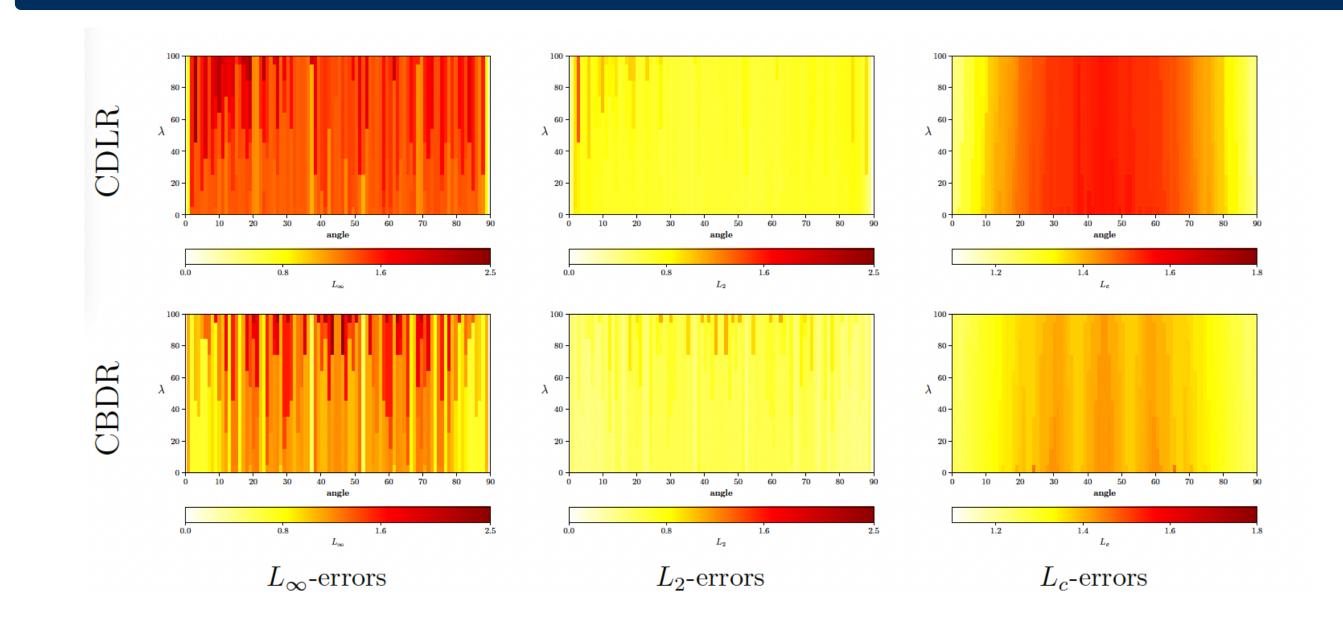


• For each D^i , compute the optimal assignment that minimizes

$$\begin{vmatrix} \mathbf{c} : \mathbb{Z}^2 \to \mathbb{R}^+ \\ \mathbf{D}^{\mathbf{i}} \to \sum_{j,k} ||D_j^i - R_\alpha(D_k^i)||_2^2 \end{vmatrix}$$

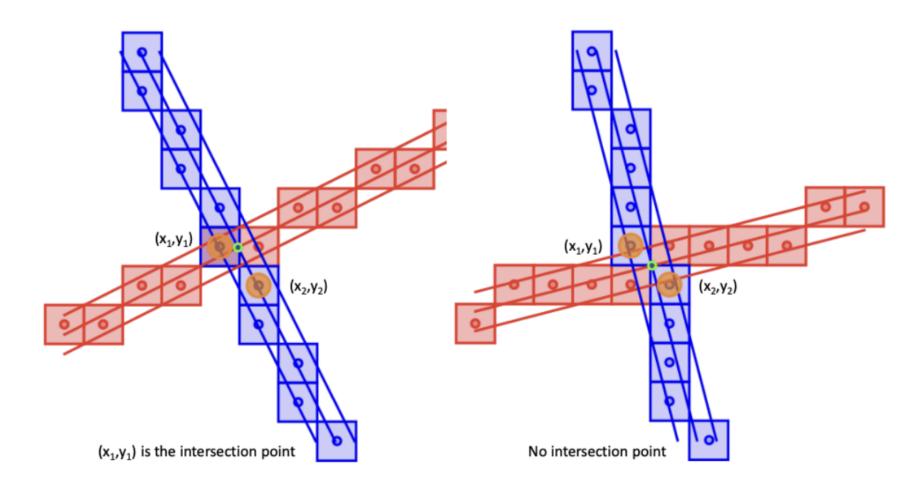


Optimization with respect to different metrics



Composition of Discrete Line Reflections (CDLR)

- Composition of 2 reflections
- choose the 2 reflections that minimises one of the metric error
- One-to-one mapping



Perspectives

• Tackling the problem of registration with bijective and as continuous as possible rigid transformation,

• Extending to 3D the proposed approximation methods.

Implementation

• All the presented approaches with quasi-shears are implemented in **DGtal**

