Persistent Intrinsic Volumes

Persistent homology as a tool for geometric inference

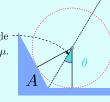
Antoine Commaret David Cohen-Steiner

Problem. Recovering the boundary area of a set Y from an approximating set X as a function of $\varepsilon = d_H(X, Y)$.

Some notations. d_A denotes the distance to any $A \subset \mathbb{R}^d$.

- $A^t := \{x \in \mathbb{R}^d \mid d_A(x) \le t\}$ is the t-offset of A.
- $H_i(A)$ is the *i*-th homology vector space over an arbitrary field.
- $\dim H_i(A)$ is its *i*-th Betti number.

The μ -reach of a set A is the largest t such that for any $x \in A^t \setminus A$, the cosine of the half-angle between two closest points of x in X is less than μ .



A

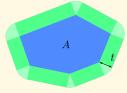
Theorem. When $t < \operatorname{reach}_{\mu}(A)$, for every $\varepsilon > 0$, there exists a flow whose trajectories, parametrized by the arc-length, make d_A decrease at speed $\geq \mu - \varepsilon$ on $A^t \setminus A$.

Smooth sets, polyhedra and most stratified sets have positive μ -reach.

Intrinsic volumes $V_0(A), \dots V_d(A)$ are quantities defined for most subsets A of \mathbb{R}^d , and are related to their curvatures. For submanifolds, they coincide with the *Lipschitz-Killing curvatures*. For convex sets, they are defined by the volume of offsets.

$$Vol(A^t) =: \sum_{i=0}^{d} \omega_i t^i V_{d-i}(A)$$

volume of the unit ball of \mathbb{R}^i



More generally, they can be obtained via the **principal kinematic formula**.

$$\int_{\mathbb{R}^d} \chi(A \cap B(x,t)) \, \mathrm{d}x = \sum_{i=0}^d \omega_i t^i V_{d-i}(A) =: Q_A(t)$$

Steiner's polynomial of A

Example. Up to scaling constants,

- $V_{d-1}(A)$ is the boundary area $\mathcal{H}^{d-1}(\partial A)$.
- $V_1(A)$ is the mean curvature of A.
- $V_0(A)$ is the Euler characteristic $\chi(A)$.

The persistent Steiner polynomial is defined as

$$Q_{X,\varepsilon}(t) := \int_{\mathbb{R}^d} \chi(\operatorname{dgm}(X,\varepsilon,x)_t) \,\mathrm{d}x$$

Final theorem. Recovering surrogates coefficient from $Q_{X,\varepsilon}$ yields quantities $V_i(X,\varepsilon,R)$ such that

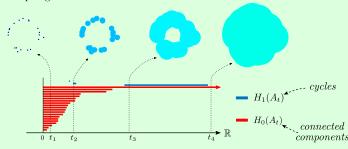
$$\left|V_i(X,\varepsilon,R)-V_i(Y^{2\varepsilon})\right| \leq \frac{P(i,d,R)M_R(Y^{2\varepsilon})\varepsilon}{\mu} \qquad \begin{array}{c} \text{fraction} \\ \text{in } i,d,R \end{array}$$

When Y has bounded total curvatures, we further show that

$$|V_i(X, \varepsilon, R) - V_i(Y)| \le (M_R(Y^{2\varepsilon}) + M_R(Y)) \frac{P(i, d, R)\varepsilon}{\mu}$$

A filtration is a family $(A_t)_{t\in\mathbb{R}}$ non-decreasing for the inclusion.

A **persistence diagram** associates to a filtration the values of birth and death of topological features.



Diagrams are made rigorous by their algebraic counterparts, called **persistent homology modules**. In dimension i, a bar **is born** (resp. **dies**) at time t when the dimension of $H_i(A_t)$ increases (resp. **decreases**) at t.

If $(A_t), (B_t)$ are two filtrations such that for every $t, A_t \subset B_t$, the **image persistence module** dgm(A, B) is given by the bars of the families $\iota_*(H_i(A_t))$.

$$\longrightarrow \iota_*(H_i(A_t)) \longrightarrow \iota_*(H_i(A_s)) \longrightarrow H_i(B_t) \xrightarrow{\uparrow} H_i(B_s) \xrightarrow{\downarrow} H_i(B_s) \xrightarrow{\downarrow} H_i(A_t) \longrightarrow H_i(A_t) \longrightarrow H_i(A_s) \longrightarrow H_i(A_s) \longrightarrow H_i(A_t) \longrightarrow H_i(A_t)$$

Since $X^{\varepsilon} \subset Y^{2\varepsilon} \subset X^{3\varepsilon}$, for any $x \in \mathbb{R}^d$ we put $\operatorname{dgm}(X, \varepsilon, x)$ the persistence image diagram induced by the two filtrations $(X^{\varepsilon} \cap B(x,t))_{t \in \mathbb{R}}$ and $(X^{3\varepsilon} \cap B(x,t))_{t \in \mathbb{R}}$, and $\operatorname{dgm}(Y^{2\varepsilon}, x)$ for $(Y^{2\varepsilon} \cap B(x,t))_{t \in \mathbb{R}}$

$$\longrightarrow H_i(X^{3\varepsilon} \cap B(x,t)) \longrightarrow H_i(X^{3\varepsilon} \cap B(x,s)) \longrightarrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\longrightarrow H_i(Y^{2\varepsilon} \cap B(x,t)) \longrightarrow H_i(Y^{2\varepsilon} \cap B(x,s)) \longrightarrow$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$\longrightarrow H_i(X^{\varepsilon} \cap B(x,t)) \longrightarrow H_i(X^{\varepsilon} \cap B(x,s)) \longrightarrow$$

 χ -averaging Lemma : Let $\mu > 0$ such that $d_H(X,Y) \le \varepsilon \le \operatorname{reach}_{\mu}(X)$. Then

$$\int_{0}^{R} \left| \chi(\operatorname{dgm}(X, \varepsilon, x)_{t}) - \chi(\operatorname{dgm}(Y^{2\varepsilon}, x)_{t}) \right| dt \leq 2 \frac{\varepsilon}{\mu} N_{0}^{R}(\operatorname{dgm}(Y^{2\varepsilon}, x))$$

Alternating sum of the Betti numbers at filtration value t

Number of bars of the diagram inside [0,R]

Theorem. Let $\mu > 0$ be such that $d_H(X,Y) \leq \varepsilon \leq \frac{1}{4} \operatorname{reach}_{\mu}(X)$. Then,

$$\int_0^R |Q_{X,\varepsilon}(t) - Q_{Y^{2\varepsilon}}(t)| dt \le \frac{4\varepsilon}{\mu} \int_{\mathbb{R}^d} N_0^R(\mathrm{dgm}(Y^{2\varepsilon}, x))$$

Morse theory Lemma. Counting the critical points of $(d_x)_{|Y|}$ yields:

$$\int_{\mathbb{R}^d} N_0^R(\operatorname{dgm}(Y^{2\varepsilon},x)) \leq M_R(Y^{2\varepsilon}) \qquad \text{depends on the total curvatures of } Y^{2\varepsilon}.$$