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Translation surfaces

L-shape : Genus 2 translation surface with 6π singularity

Translation surfaces : polygons glued by translations.
Singularity : point not locally isometric to the Euclidian plane.
Saddle connection : line segment between singularities.
Goal : Enumerate all saddle connections.
Motivations : systole computing, length spectra, dynamics...

Results

Infinitely many saddle connections but finitely many of them of length at most R.

Theorem : Masur 1990

Let M a translation surface and R > 0. Let SC(M,R) the set of all saddle
connections of length at most R.

c1R
2 − b ≤ |SC(M,R)| ≤ c2R

2 + b

where c1 > 0, c2 > 0 and b are constant depending only of M .

Two flavors of enumeration of saddle connections :
� Semi-algorithm which enumerate all saddle connections.
� Algorithm which enumerate all saddle connections with length at most R.

Theorem : V. Delecroix and O.F. 2024

� Enumeration of saddle connections with length at most R in Θ(R3). (Un-
folding algorithm)

� Enumeration of saddle connections with O(1) delay. (iso-Delaunay enume-
ration)

� If the surface is a Veech surface, enumeration of saddle connections with
length at most R in Θ(R2). (iso-Delaunay enumeration)

Unfolding algorithm

Idea of the algorithm : Given a triangulation of a surface, explore all the triangles visible from a singularity and enumerate the discovered saddle connections.

Triangulation of the L-shape Different steps of the naive algorithm on the L-shape

Delaunay triangulation

A triangulation is a Delaunay triangulation if it satisfy the following local
property :
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α + β ≤ π

SL2(R)-action and the hyperbolic plane

SL2(R) acts on the space of translation surface by applying a matrix on
each of the polygons forming a translation surface.
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The SL2(R)-orbit of a translation surface M corresponds to H2 = {u+
iv ∈ C|v > 0} ' SO2(R)\SL2(R) the hyperbolic plane by

u + iv ∈ H2 7→ 1√
v
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)
·M

.

Iso-Delaunay cell

Let τ be a triangulation of M . The iso-Delaunay cell of τ is the set of

point of H2 admitting τ as a Delaunay triangulation.

Some iso-Delaunay cells for the L-shape

Theorem : V. Delecroix and O.F. 2024
For each saddle connection γ, there is at least one triangulation τ with
an non-empty iso-Delaunay cell containing γ. (In fact, infinitely many
of them)

Idea of the iso-Delaunay enumeration : explore all the iso-Delaunay cells
in the orbit of a translation surface and note every saddle connections
discovered.
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