

ON THE TWIN-WIDTH OF SMOOTH MANIFOLDS [arXiv:2407.10174]

CNRS, ENS de Lyon, Laboratoire de l'Informatique du Parallélisme, † Graz University of Technology, Institute of Geometry

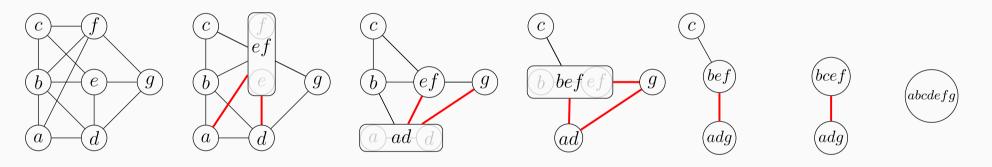
Context, Motivation and Guiding Questions

I. What are "good" triangulations of manifolds for computational purposes? [The answer depends on who you ask.]

- Several algorithms are efficient (i.e. FPT) on 3-manifold triangulations with dual graph of small *treewidth*: [Burton-Spreer, 2013], [Burton-Petterson, 2014], [Burton-Lewiner-Paixão-Spreer, 2016], [Burton-Downey, 2017], [Burton-Maria-Spreer, 2018].
- Introduced in 2020 ([Bonnet-Kim-Thomassé-Watrigant, 2022]), the *twin-width* is a graph parameter of emerging interest with many applications, e.g. in *first-order model checking* and *approximation algorithms* in graph optimization problems, cf. [Bonnet, 2024].
- Anticipating algorithmic applications in computational topology, we aim at exhibiting triangulations of (triangulable) manifolds of any dimension with dual graph of twin-width as small as possible.
- **II. Can such triangulations be efficiently constructed?** \rightarrow Currently only partial answers known (different for treewidth and twin-width).
- III. What are some algorithmic applications of triangulations with dual graph of small twin-width? \rightarrow Currently wide open.

Contraction Sequences and the Twin-Width of a Graph

We consider **contraction sequences** of graphs over which some edges become **red**.



The *width* of a contraction sequence is the maximum red degree in the sequence. The **twin-width** tww(G) of a graph is the smallest width of any contraction sequence of G. The above example shows that the twin-width of the leftmost graph is at most two. Figure source: [Bonnet, 2024]

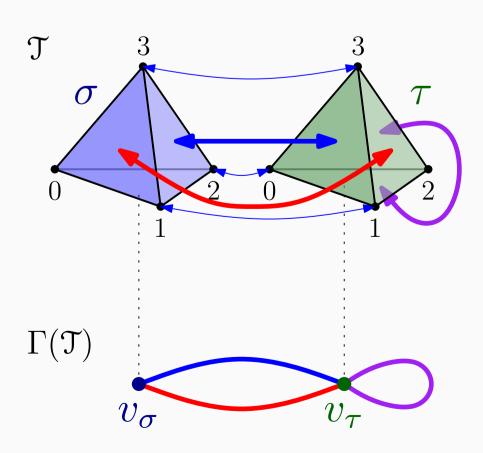
Triangulations of Manifolds and their Dual Graphs

Triangulations...

Every compact smooth d-manifold admits a **triangulation**, i.e. finitely many *d*-simplices glued together along pairs of (d-1)-faces.

...and their Dual Graphs

The **dual graph** $\Gamma(\mathfrak{T})$ of a triangulation \mathcal{T} is a multigraph whose vertices correspond to the *d*-simplices of \mathfrak{T} and edges to the face gluings.



Fact: More than 13 thousand 3-manifolds can be triangulated with ≤ 11 tetrahedra. The notion of the dual graph can naturally be extended to *pure complexes* as well.

Strong Embedding Theorem. Any smooth d-manifold \mathcal{M} can be smoothly embedded into \mathbb{R}^{2d} . Given a smooth embedding of \mathcal{M} and a triangulation of \mathbb{R}^{2d} , a triangulation of \mathcal{M} (called a Whitney triangulation) may be constructed [Whitney, 1944], cf. [Boissonnat–Kachanovich– Wintraecken, 2021.].

Édouard Bonnet^{*} and Kristóf Huszár[†]

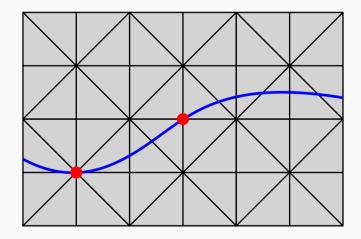
Theorem 1: Triangulations of bounded twin-width

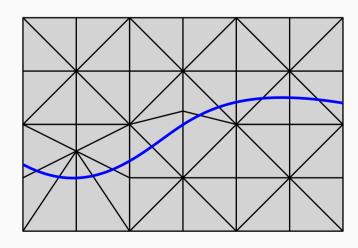
Any compact d-dimensional smooth manifold admits a triangulation with dual graph of twin-width $\leq d^{O(d)}$.

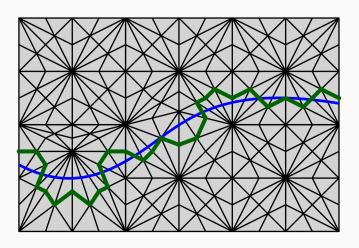
Theorem 2: Triangulations of large twin-width

For every compact d-dimensional $(d \ge 3)$ piecewiselinear manifold \mathcal{M} and $n \in \mathbb{N}$, there is a triangulation \mathfrak{T} of \mathfrak{M} with dual graph of twin-width tww($\Gamma(\mathfrak{T})$) $\geq n$.

Whitney's Method



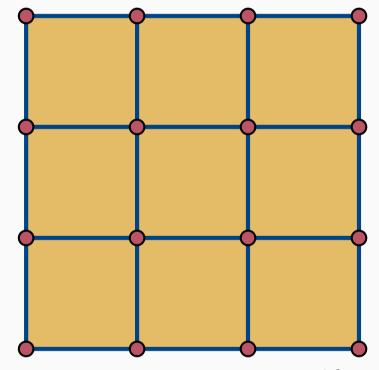




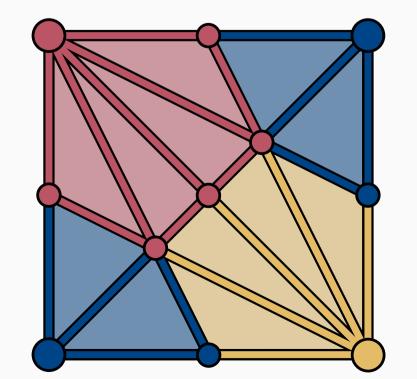
Bounding the Twin-Width of $G_{d,n}$ for the Proof of Theorem 1

 $\mathbf{H}^{2d,n}$ is the 2*d*-dimensional hypercubic honeycomb that decomposes $[1, n]^{2d}$ into $(n - 1)^{2d}$ geometric cubes. $G_{d,n}$ is the dual graph of the *d*-skeleton of the second barycentric subdivision of $\mathbf{H}^{2d,n}$. In the figures below d = 1 and n = 4.

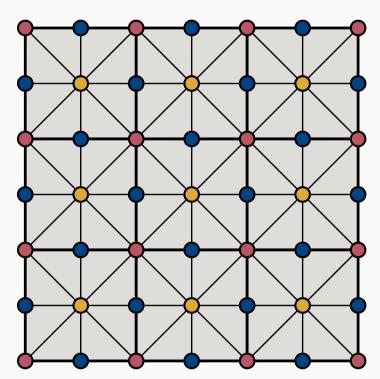
Fact. For any Whitney triangulation \mathcal{T} of a smooth *d*-manifold, $\Gamma(\mathcal{T})$ is an *induced subgraph* of $G_{d,n}$ for a sufficiently large *n*.



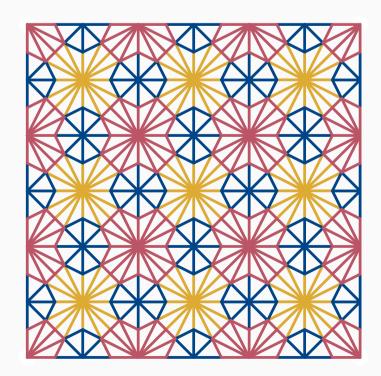
The hypercubic honeycomb $\mathbf{H}^{2d,n}$; its cells are colored by their dimension.



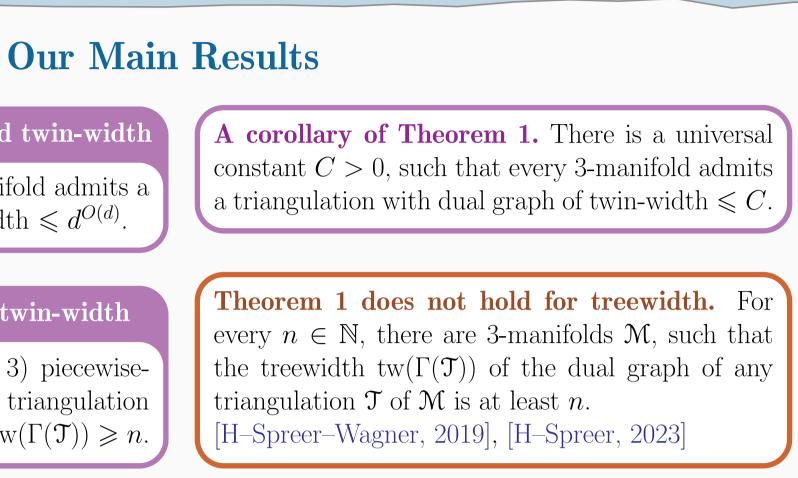
An extension of the coloring to all simplices of $(\mathbf{H}^{2d,n})''$ (shown near the top left corner).

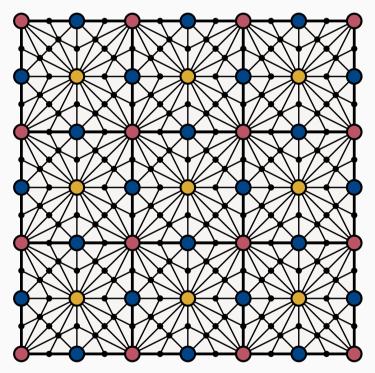


The barycentric subdivision $(\mathbf{H}^{2d,n})'$ with its vertices colored as their corresponding cells in $\mathbf{H}^{2d,n}$.

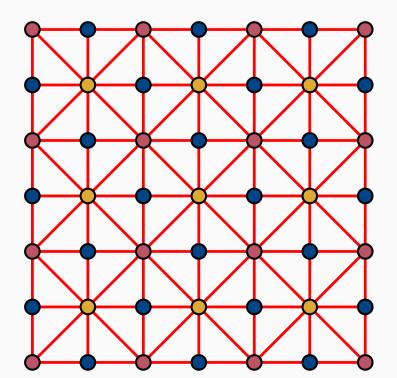


The extended coloring restricted to the *d*-simplices of $(\mathbf{H}^{2d,n})''$ gives a partition of the *d*-simplices into connected monochromatic components.





The second barycentric subdivision $(\mathbf{H}^{2d,n})''$. Vertices corresponding to those in $(\mathbf{H}^{2d,n})'$ are colored as before.



By contracting each monochromatic component to a single node, we obtain a graph $G_{d,n}^*$ with all edges red. It is known that tww(G_{dn}^*) $\leq 3^{2d+1}$.