
Incremental Watershed Cuts: Interactive Segmentation
Algorithm with Parallel Strategy

Quentin Lebon1, Josselin Lefèvre1,2, Jean Cousty1, Benjamin Perret1
1 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France 2 Thermo Fisher Scientific, Bordeaux, France

Context
With large and complex images, segmentation can be a tedious task. For an easier
and more pleasant experience for the user, interactive segmentation is often used.

The user is asked to place markers on the image to help the algorithm to know
which object needs to be segmented

Problem
▶ Current state-of-the-art methods are not suitable for interactive segmentation.

• They recompute the segmentation for the whole image at every interaction;
▶ Interactive segmentation of large images or volumes leads to huge latency

between user clicks.
• Example: MRI, astronomical, satellite images,

Solution: Incremental Watershed Cuts Algorithm
▶ At each interaction, leverage computations done at previous interactions;
▶ Produce the same result as the state-of-the-art algorithms but more responsive

Incremental Watershed Cuts on Binary Partition Hierarchy

M3 M1

M2

0

0 0

0

0

0

0

65

61

2 4 0

0

0
1

At first, markers are added on pixels of
the image. In our hierarchy, leaf are
marked as each vertex of the graph is
linked to a pixel.

2

0

M3 M1

M2

1

1 1

2

1

1

2

65

61

2 4 0

0

0
1

During markers addition (here M1, 2, 3),
for each of them we climb the hierarchy
bottom-up, each node encountered is
incremented by 1. The process stopped
is the root is reached, or a node is 2
after increment.

2

0

M3 M1

M2

1

1 1

2

1

1

2

65

61

2 4 0

0

0
1

When a node equals 2, it is a watershed
node. As each non-leaf node is linked to
an edge, we can add those in the
watershed cuts and remove them from
the minimum spanning tree. Connected
components are labeled accordingly.

M3 M1

M2

1

1 0

1

1

1

2

65

61

2 4 0

0

0
1

During markers removal (here M2), for
each of them we climb bottom-up, each
node encountered is decremented by 1.
The process stopped is the root is
reached, or a node is 1 after decrement.

M3 M1

1

1 0

1

1

1

2

65

61

2 4 0

0

0
1

If a node equals 1, it is not a watershed
node anymore. Each removed edge is
added back in the minimum spanning
tree, and the connected component are
relabeled.

Sequential Strategy for Pixel Labeling

As we work with a minimum spanning tree :
▶ Removing an edge : split a connected component (CC) in two
▶ Adding an edge : merge two connected components into one

We label CC using Breadth First Search, by starting on the extremity of the
added/removed edge. Thus, only the affected pixels are updated :

▶ When a merge occur, we can spread the label of the biggest CC to the other one
▶ However, this trick is not possible when we split CC

Overview of the Incremental Watershed Cuts Method

Input Image

Create binary
partition tree A tree Add/Remove seeds

Segmentation
display

User interactions

Split/Merge regions A Label Image

Tree creation

A marked
tree/cut set

Tree-node (un)marking Pixel Labeling

Binary Partition Hierarchy and Minimum Spanning Tree

The binary partition hierarchy is a
data structure that can be obtained
during the execution of Kruskal’s
algorithm, allowing to obtain a
minimum spanning tree A of a given
G = (V , E,w). Each leaf is associated
to a vertex of A and each internal
node is an edge of A.

6

7

3 12 2 8 1

1011141516

13 4 9 5

In black a binary partition tree and in
bold red its associated minimum
spanning tree.

Problem - Efficient Labeling of Minimum Spanning Forest

▶ The average execution time at each user interaction is :
• less than 0.10sec on 2D images
• 0.50 to 2.50sec on 3D images

▶ On 3D data, our method is not responsive enough
▶ On large 3D images, 3D data CC labeling take up to 99% of the time for a single

user interaction.

Solution: Parallel Pixel Labeling
▶ Took inspiration from [1] and adapt the principle to our problem

Parallel Strategy for Pixel Labeling

Current Level-Set E

Parallel
comptutation of

Ei

Sequential
computation of E

Yes No
|E| > MIN_BREADTH ?

Union of EiAn array Ei for
each core i

Next level-set
E

Distribute
E across every

thread i

Synchronisation
Barrier

▶ At beginning, the level set E is
composed of the extremity of the
added/removed edge

▶ If |E | is above a threshold
MIN_BREADTH we explore in
parallel :
• E is equally distributed in small

subset for each thread i, thus they
have the same amount of work

• Each thread label the successors of
its level-set, and create the next
level-set Ei at the same time

• Once all thread are finish all Ei are
merged into one array E, which is the
global next level-set

▶ Exploration is done when the
current level-set is empty.

▶ MIN_BREADTH allows us to explore
small level-set in sequential, thus
avoid bad performance because
of synchronization time

Experiences and results

▶ We generate marker
automatically to simulate user
interaction. Our experiments
are based on :
• Natural 2D images dataset with

150 images from 3.2 to 18 MPixels
• Liver segmentation 3D images

dataset with 5 MRI of 32.5 to 68
MPixels

▶ We compared ourselves with
state-of-the-art methods and
implementation

Method Init Average Min Accumulated
IWS* 7.92 86.18 26.78 0.54
NIWS* 7.92 24.72 23.71 0.32
IWS_PAR* 7.34 216.78 96.14 0.89
Amira ∅ 8.14 7.38 0.13
ITK ∅ 6.49 6.22 0.11

Result on the 3D data-set (* ours)

▶ The scalability of the methods is confirmed,
performance increase as the user interact

▶ On 3D data using the parallel method, a
user interaction is proceeded in 0.15 to
0.7sec

References
[1] Youkana, Imane and Cousty, Jean and Saouli, Rachida and Akil, Mohamed. Parallelization strategy for elementary

morphological operators on graphs: distance-based algorithms and implementation on multicore shared-memory
architecture. JMIV, pages 136–160, 2017

[2] Lebon, Q., Lefevre, J., Cousty, J., and Perret, B. (2023). Interactive Segmentation with Incremental Watershed Cuts.
CIRAP pages 189–200

[3] Lebon, Q., Lefevre, J., Cousty, J., and Perret, B. (2024). Incremental Watershed Cuts: Interactive Segmentation
Algorithm with Parallel Strategy. Under Review

2024

