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Gist of the presentation

Finding quasigeodesics on polyhedra

[Chartier, dM DCG ’24]

Treewidth of knot diagrams

[dM, Purcell, Schleimer, Sedgwick JoCG ’19],
[Lunel, dM SOCG ’23]

These two seemingly very different problems boil down to understanding the best way to sweep
a sphere using lower-dimensional spheres.



1. Closed (quasi-)geodesics on polyhedra



Geodesics on smooth manifolds

A Riemannian metric is a smooth metric on a manifold.
→ Example: Submanifolds of R3 are endowed with the metric induced by the ambient
space.
A geodesic on a Riemannian manifold is a curve that is locally straight at each point
(equivalently, a curve that locally realizes shortest paths).

A curve is simple if it does not self-intersect.

Very old question in differential geometry
Does every compact Riemannian manifold contain a closed geodesic?
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Poincaré ’1905
Does every Riemannian two-dimensional sphere contain three simple closed geodesics?



Geodesics on smooth manifolds

A Riemannian metric is a smooth metric on a manifold.
→ Example: Submanifolds of R3 are endowed with the metric induced by the ambient
space.
A geodesic on a Riemannian manifold is a curve that is locally straight at each point
(equivalently, a curve that locally realizes shortest paths).
A curve is simple if it does not self-intersect.

Theorem (Lyusternik-Schnirrelmann ’29, Ballmann ’78, Grayson ’89)
Every Riemannian two-dimensional sphere contains at least three simple closed geodesics.



Geodesics on polyhedra

Are there polyhedral versions of this theorem?

What is a geodesic on a convex polyhedron in R3? It goes straight within faces and when
crossing edges and

1

2

3 Hits vertices with angles at most π on both sides? → quasigeodesic

Theorem (Pogorelov ’1949)

Any convex polyhedron in R3 admits at least three simple closed quasigeodesics.
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Are there polyhedral versions of this theorem?
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Geodesics on polyhedra

Are there polyhedral versions of this theorem?

What is a geodesic on a convex polyhedron in R3? It goes straight within faces and when
crossing edges and

1 Does not hit vertices?
2 Hits vertices with equal angles on both sides?
3 Hits vertices with angles at most π on both sides? → quasigeodesic

Theorem (Pogorelov ’1949)

Any convex polyhedron in R3 admits at least three simple closed quasigeodesics.



Computation of quasigeodesics

Open problem: O’Rourke Wyman ’90, Demaine O’Rourke ’07
Can we compute such a simple closed quasigeodesic (in polynomial time)?

Motivation: unfolding polyhedra, since quasigeodesics develop to straight lines.
Pogorelov’s proof proceeds by Riemannian approximation and is non-constructive.
Issue: how to control the combinatorics of such a quasigeodesic?

Open problem
Does there exist a universal constant c so that there always exists a simple closed
quasigeodesic crossing at most c times each edge?



State of the art and our results

Theorem (Demaine, Hesterberg, Ku ’2020)
There is an algorithm running in pseudo-polynomial* time to find a closed quasigeodesic on
any convex polyhedron, not necessarily simple.

Theorem (Simplified version of [Chartier, dM DCG 24])
Any polyhedron admits a weakly simple closed quasigeodesic of length L(γ) ≤ M, which crosses
or uses O(dM/h) times the edges or the vertices of the sphere.

M: sum of edge lengths of a triangulation.
d : maximum degree of vertices.
h: minimal altitude/height of faces, for some triangulation.

Corollary
There is an algorithm to find such a quasigeodesic in pseudo-exponential time.
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From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



From geodesics to sweepouts

How to find (quasi-)geodesics on (polyhedral) spheres? [Birkhoff ’17]

1 We sweep the sphere with a continuous family of
simple closed curves.

2 Such a sweepout is tightened by an operation that
continuously shortens the lengths of fibers.

3 By iterating this process, one fiber converges to a
quasigeodesic.

Our theorem also applies to non-convex polyhedral spheres.
In the polyhedral case, specific techniques are needed for the tightening [Chartier, dM].
The length of the quasigeodesic is at most the best possible width of a sweepout:

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

→ This bound on the length is the basis of our algorithm to find a quasigeodesic.



2. (Tree-)width of knot diagrams



Knots and algorithms

A knot is a closed curve in R3 (or S3).

Two knots are considered equivalent if one can be deformed into the other one without
self-crossings (isotopy).
A knot diagram is a projection of a knot in the plane.

Deciding whether two knots are equivalent is hard!
The best known algorithm to test whether two knots are equivalent [Kuperberg ’19] is
elementary recursive, i.e., the runtime is a tower of exponentials of bounded height.
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Knot invariants

So in order to tell knots apart, a common way is to use invariants.
For example, the Jones polynomial allows us to distinguish the previous examples:

1 1t + t3 − t4

Computing invariants is also hard!
For example, computing the Jones invariant of a knot is #P-hard [Jaeger, Vertigan, Welsh
’90],[Kuperberg ’15].



So what can we do? Look for low-width diagrams

The treewidth of a graph aims to measure "how close" a graph is to a tree.

Some examples

Small treewidth
High treewidth

When a knot diagram has small treewidth, one can use dynamic programming to compute
the Jones polynomial [Makowsky and Mariño, 2003] (and many other invariants) efficiently.



Knots of high treewidth?

Any knot has infinitely many diagrams, of arbitrarily high treewidth.

∼=

Question from [Makowsky and Mariño, 2003] and [Burton, 2016]

Are there knots for which all diagrams have high treewidth?



Yes!

Theorem (Simplified version of [dM, Purcell, Schleimer, Sedgwick JoCG 2019][Lunel,
dM SoCG 2023])
Any diagram Dp,q of a torus knot Tp,q has high treewidth, i.e.,

treewidth(Dp,q) = Ω(min(p, q)).

The proofs revolve around understanding how to sweep S3 with 2-dimensional spheres.



Sphere decompositions

Sphere decomposition
A sphere decomposition of S3 is a continuous map f : S3 → T where T is a trivalent tree
such that:

f −1 :


leaf 7→ point

inner vertex 7→ double bubble
point interior to an edge 7→ sphere



Spherewidth

Spherewidth
The spherewidth of K is :

sw (K ) = inf
f

sup
e∈E(T ),x∈e̊

|f −1(x) ∩ K |.

It is not very hard to prove that sw(K) ≤ 2minD diagram of K treewidth(D).
Our key technical contribution is to lower bound the spherewidth using tools from knot
theory in [dM, Schleimer, Sedgwick, Purcell] and from structural graph theory in [Lunel, dM].



Sweeping spheres

Finding quasigeodesics on polyhedra

width(S) = inf
f :S→[0,1]

sup
t∈[0,1]

||f −1(t)||

Treewidth of knot diagrams

sw (K ) = inf
f :S3→T

sup
e∈E(T ),x∈e̊

|f −1(x) ∩ K |.

The two problems revolve around understanding very similar width quantities (see also
pathwidth, branchwidth, etc. in graph theory).



Open problems

Open problem from O’Rourke Wyman ’90, Demaine O’Rourke ’07
Given a polyhedron, what is the complexity of computing a quasigeodesic? Can one do it in
polynomial time? What about the second and third one?

Thank you! Questions?
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Open problems

Computing discrete versions of the width
Given a triangulated sphere, what is the complexity of computing its width when sweeping
using elementary discrete operations?

Related to Homotopy Height and Homotopic Fréchet Distance,
Known to be in NP [Chambers, Chambers, dM, Ophelders, Rotman J. Diff. Geom. ’21],[Chambers,
dM, Ophelders SODA ’18], but unknown to be polynomial or NP-hard.

Thank you! Questions?
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Polyhedral spheres

Definition
A polyhedral sphere is a set of polygonal Euclidean faces glued together along their edges.
Convex polyhedra are examples of polyhedral spheres.

Make sure that the glued edges
are the same length and that
genus is zero.

The adopted point of view is intrinsic.



Polyhedral spheres

Polyhedral spheres have two types of vertices :

Around a convex vertex , the sum of the angles is at most 2π.
Around a reflex vertex , the sum of the angles is at least 2π.

Quasigeodesic
Passing a convex vertex, a quasigeodesic forms two angles at most π.
Passing a reflex vertex, a quasigeodesic forms two angles at least π.

A quasigeodesic is said to be weakly simple if it is the limit of a sequence of simple curves.
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