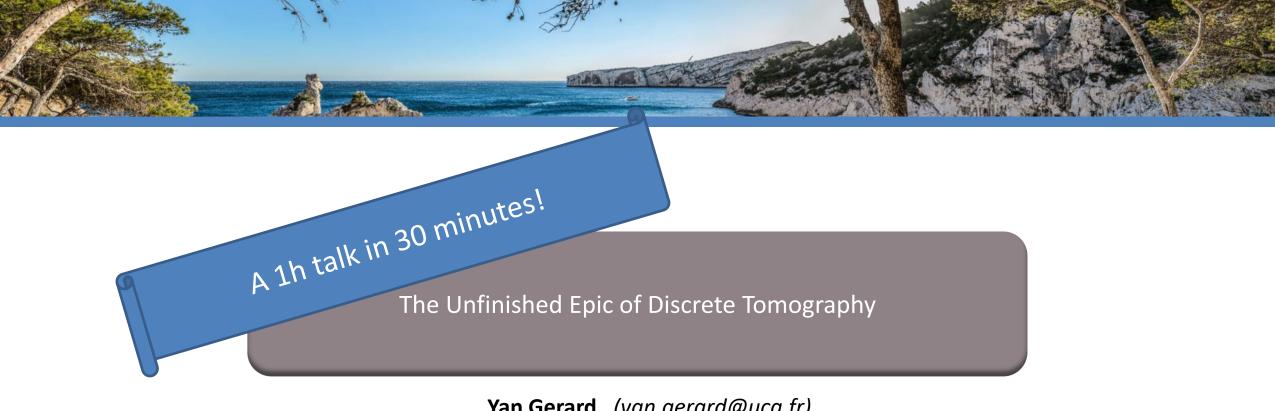


The Unfinished Epic of Discrete Tomography

Yan Gerard (yan.gerard@uca.fr)

Geometry and Computing

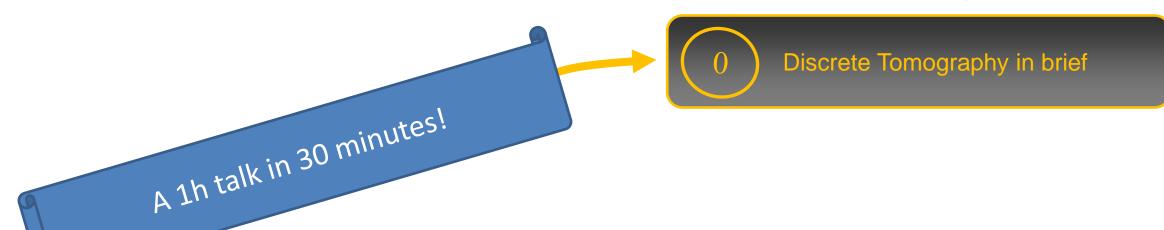
October 24th 2024, CIRM, Luminy

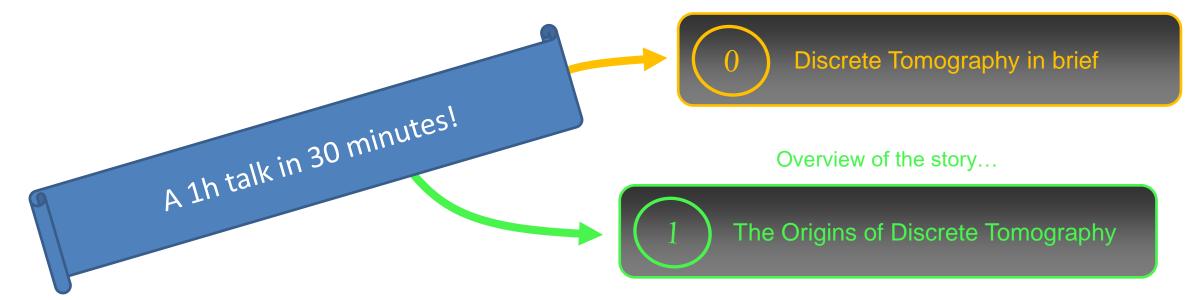


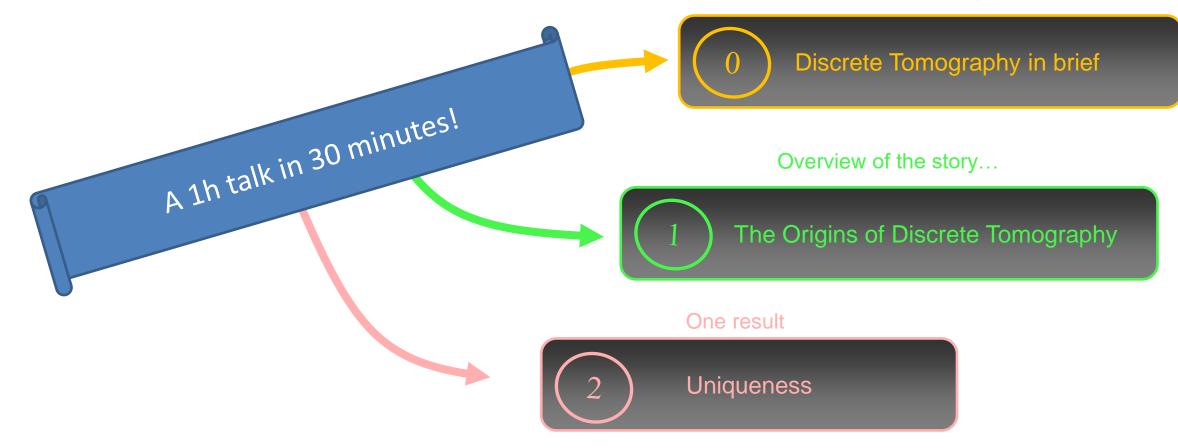
Yan Gerard (yan.gerard@uca.fr)

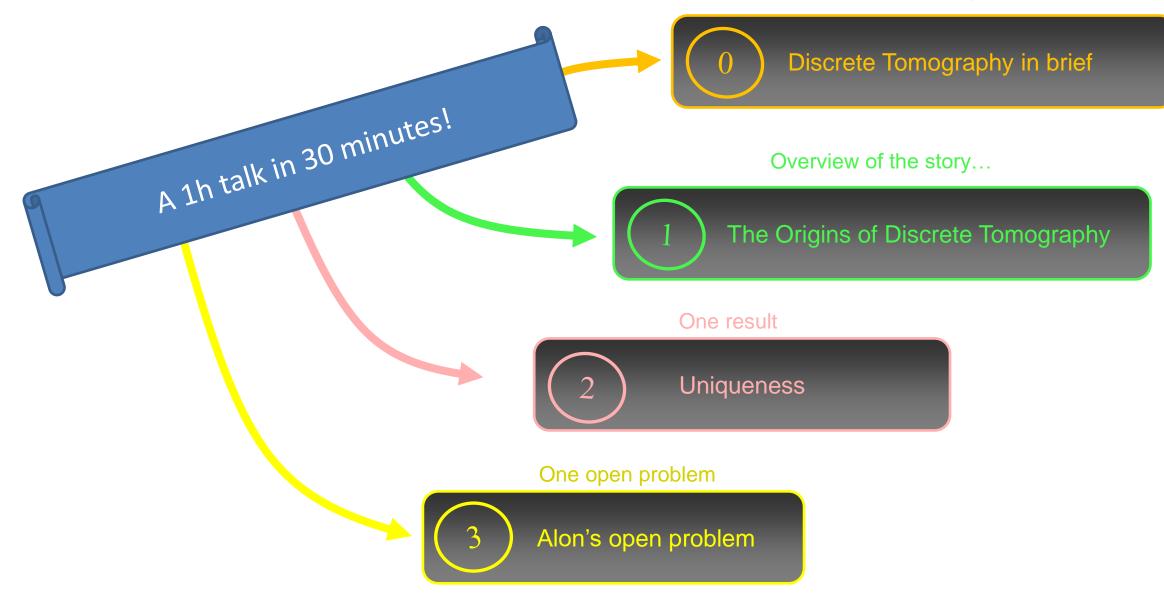
Geometry and Computing

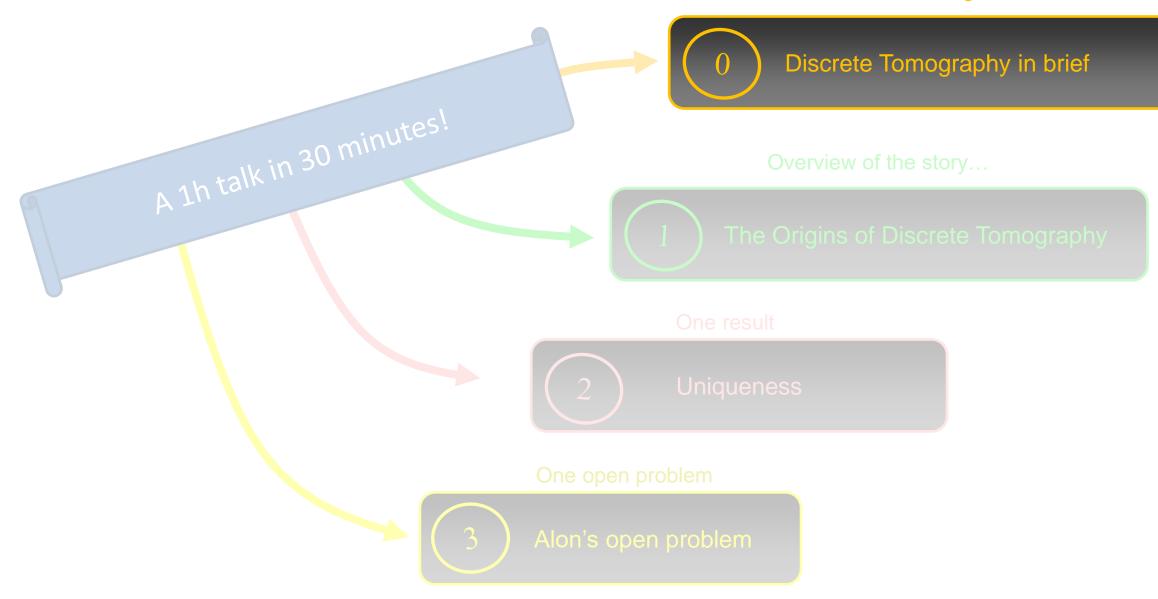
October 24th 2024, CIRM, Luminy

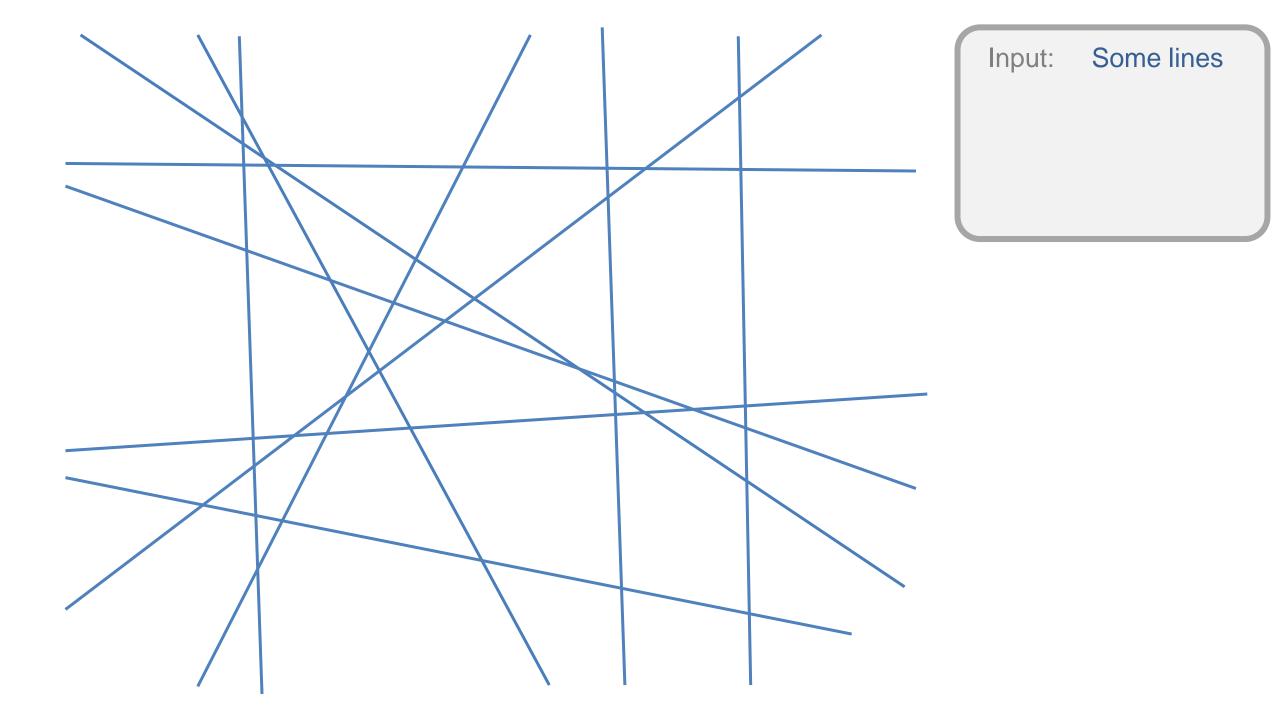


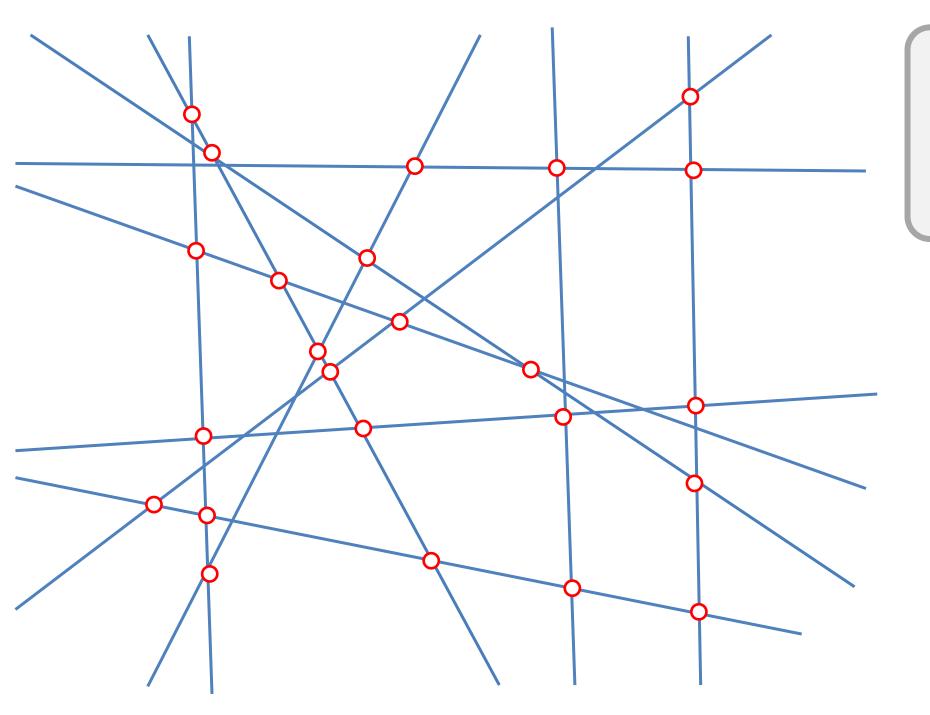






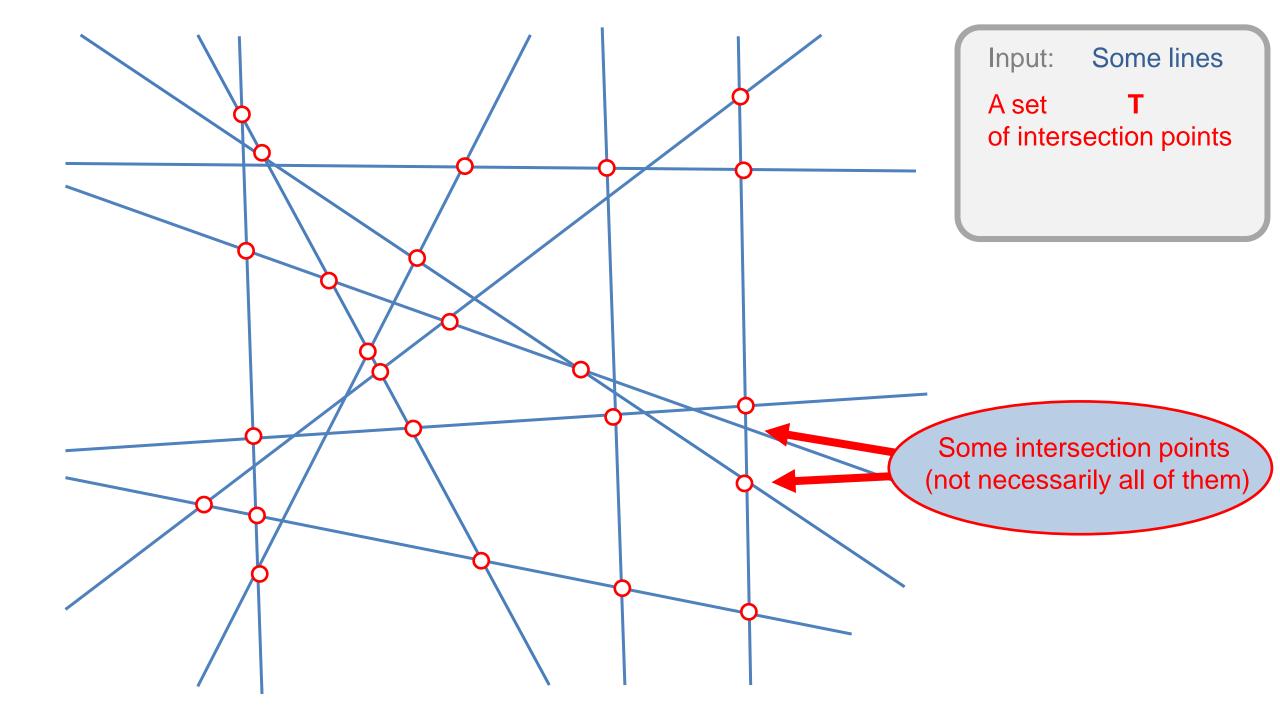


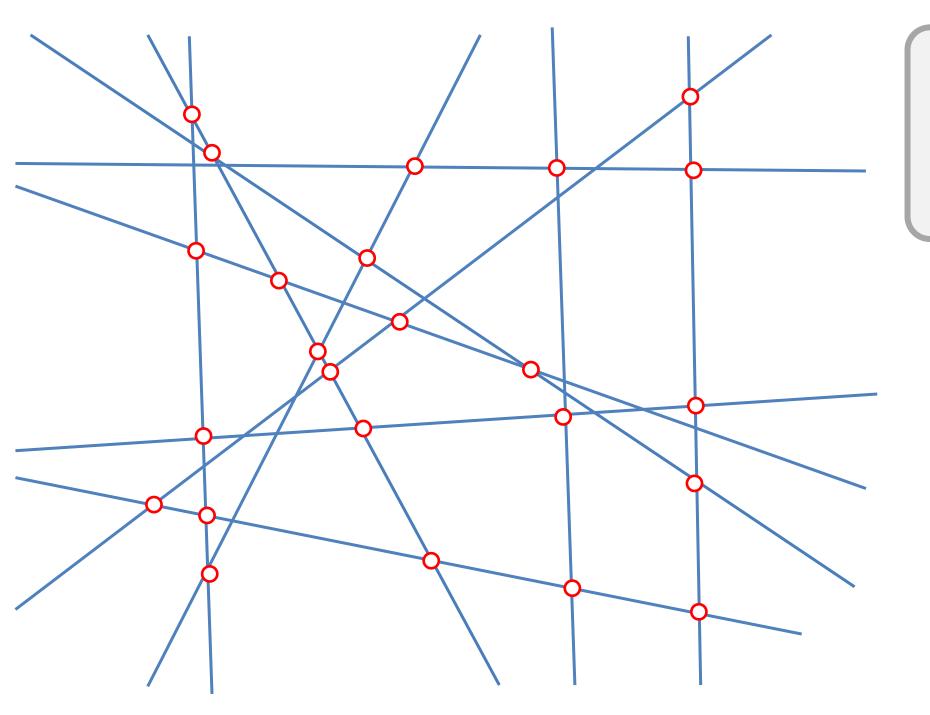




Input: Some lines

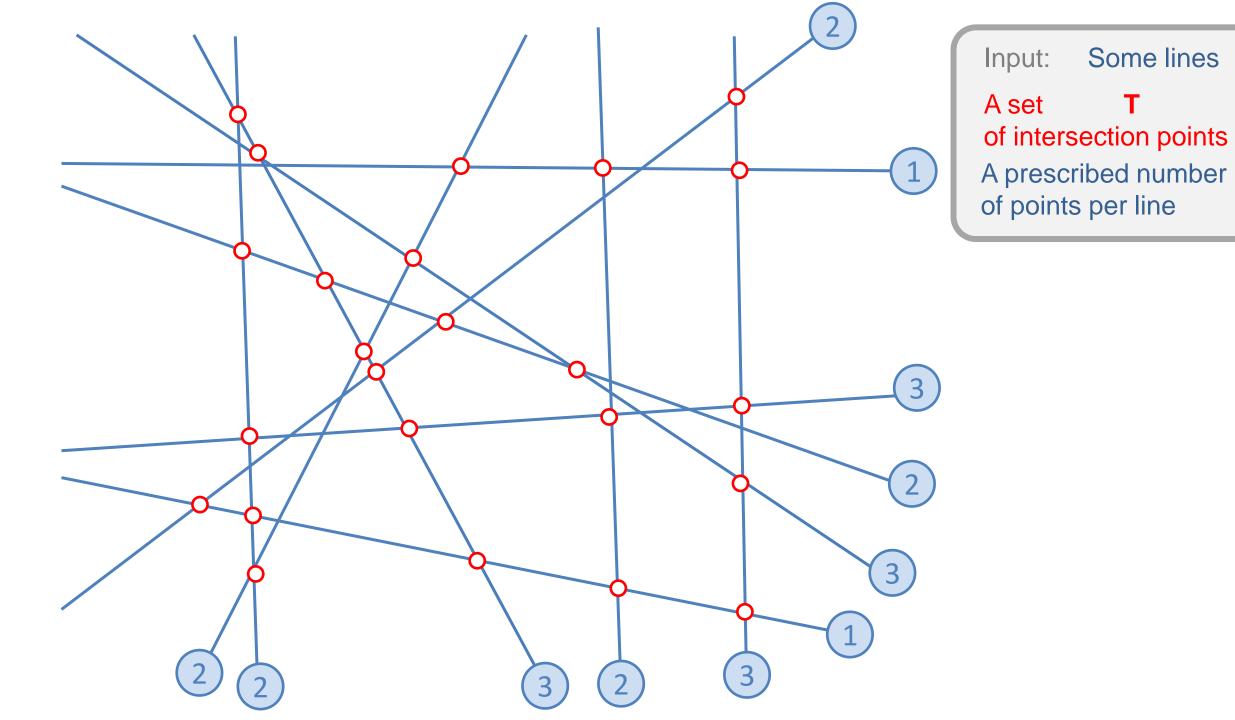
A set **T** of intersection points

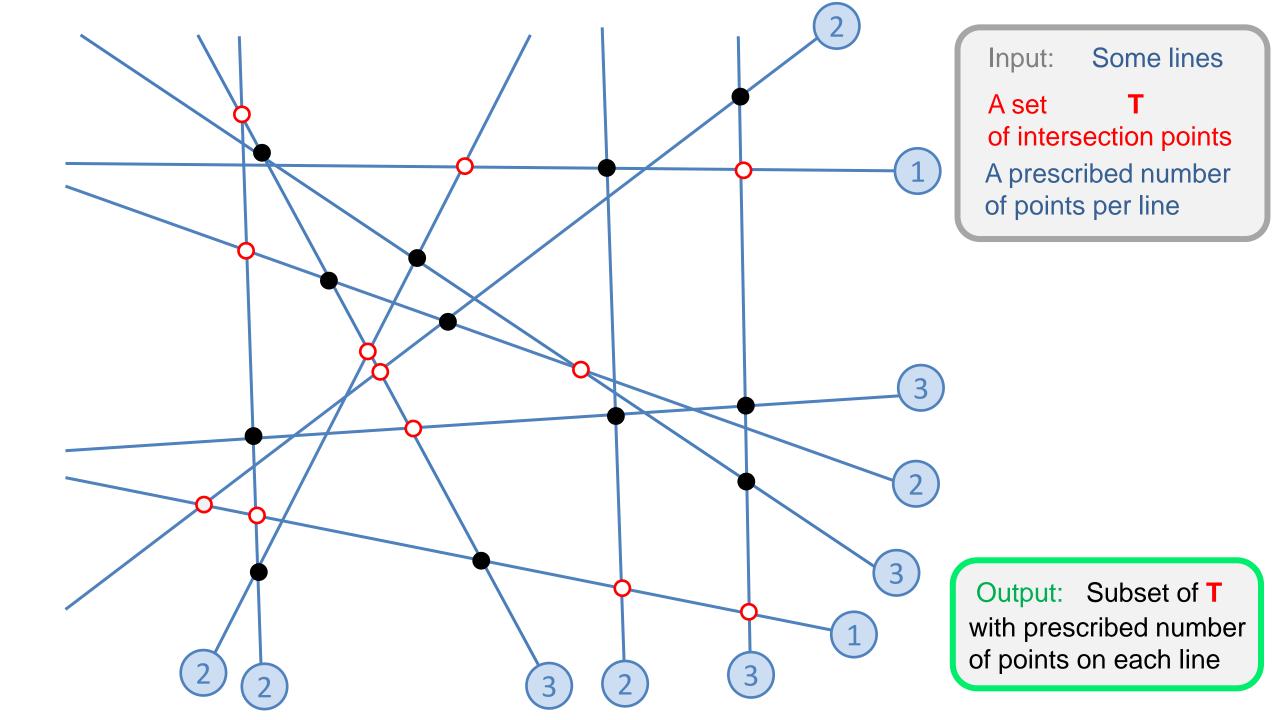


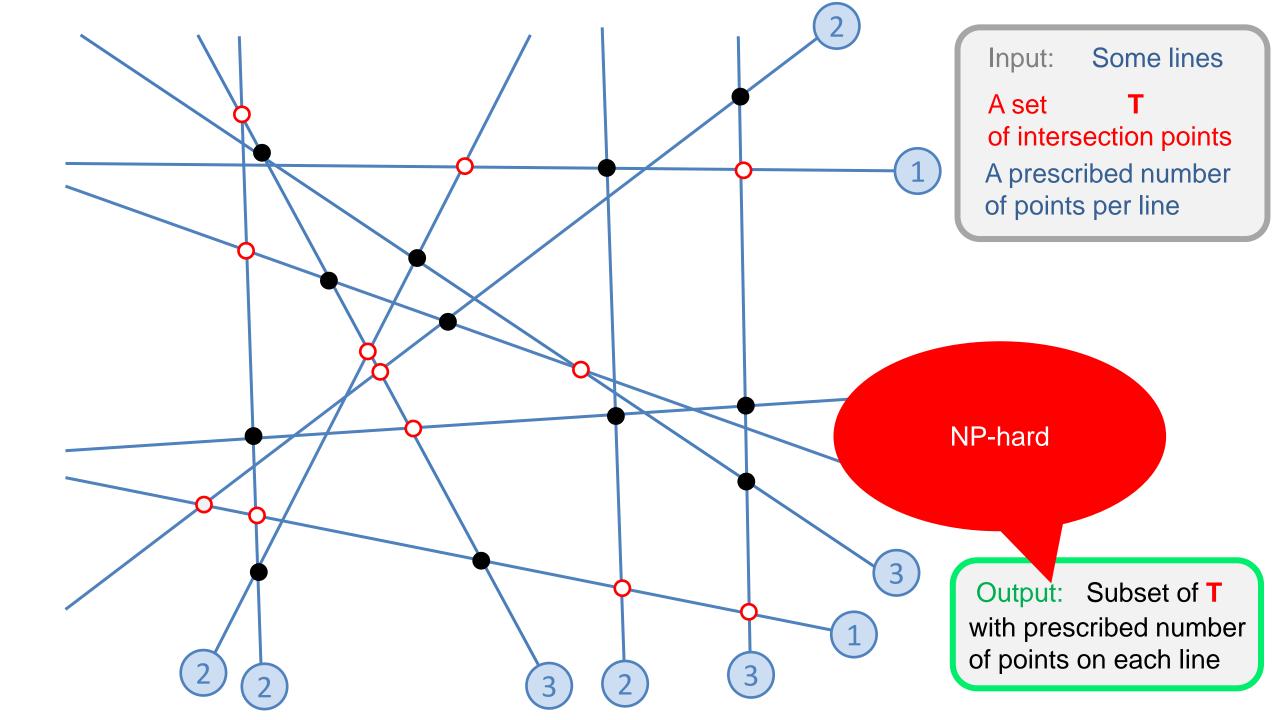


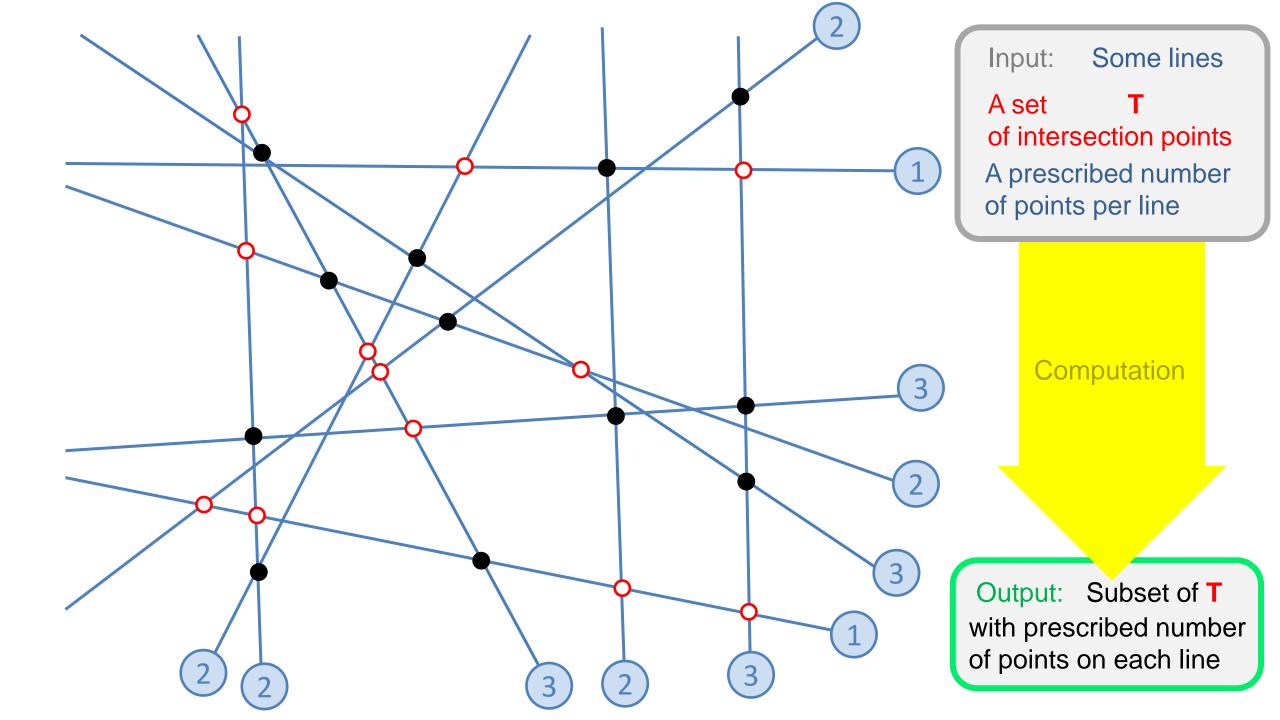
Input: Some lines

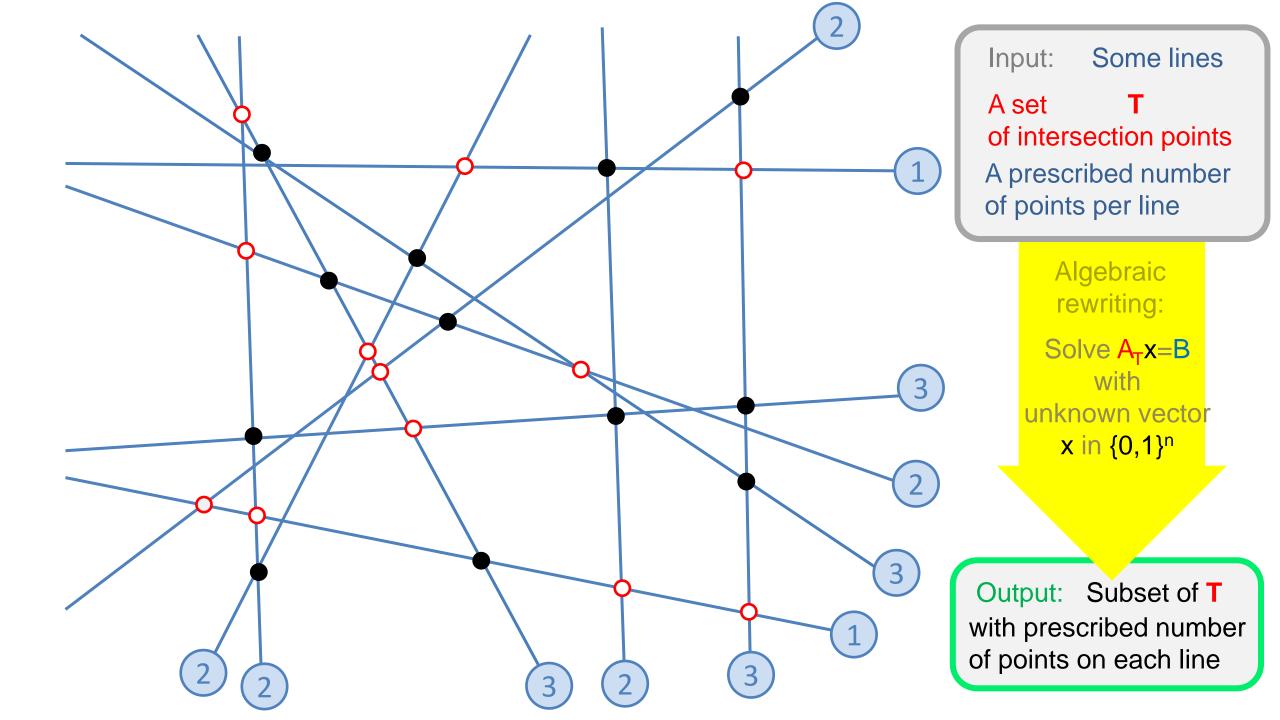
A set **T** of intersection points











The matrix A_T encodes the set system

B is the prescribed number of points on each line

Input: Some lines

A set **T**of intersection points
A prescribed number
of points per line

Algebraic rewriting:

Solve A_Tx=B with unknown vector x in {0,1}ⁿ

The matrix A_T encodes the set system

B is the prescribed number of points on each line

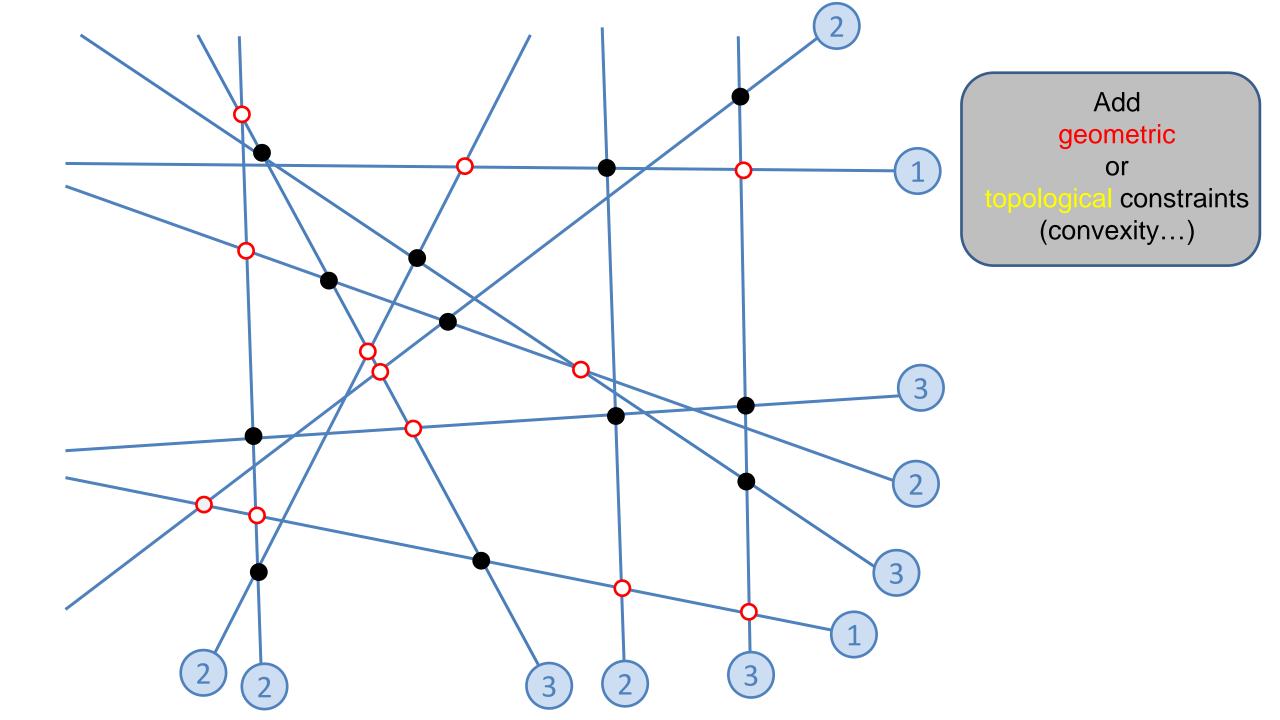
Use a ILP solver (Cplex, Gurobi...)

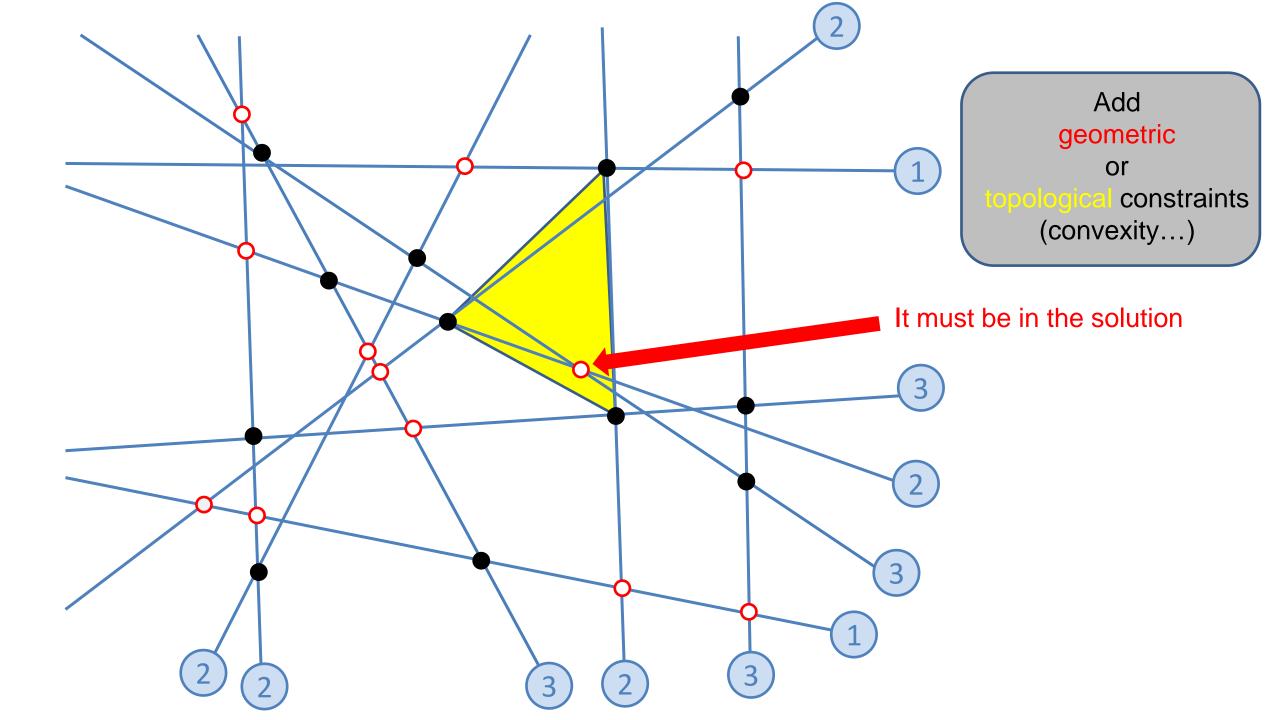
Input: Some lines

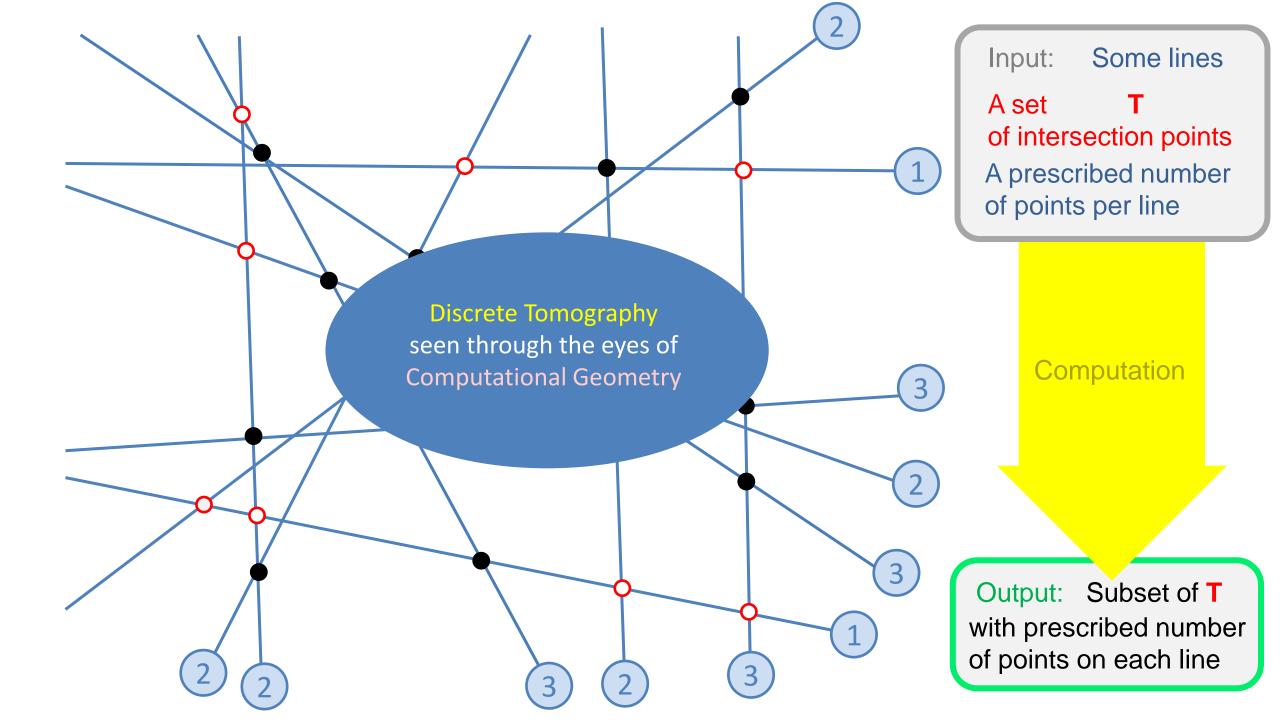
A set **T**of intersection points
A prescribed number
of points per line

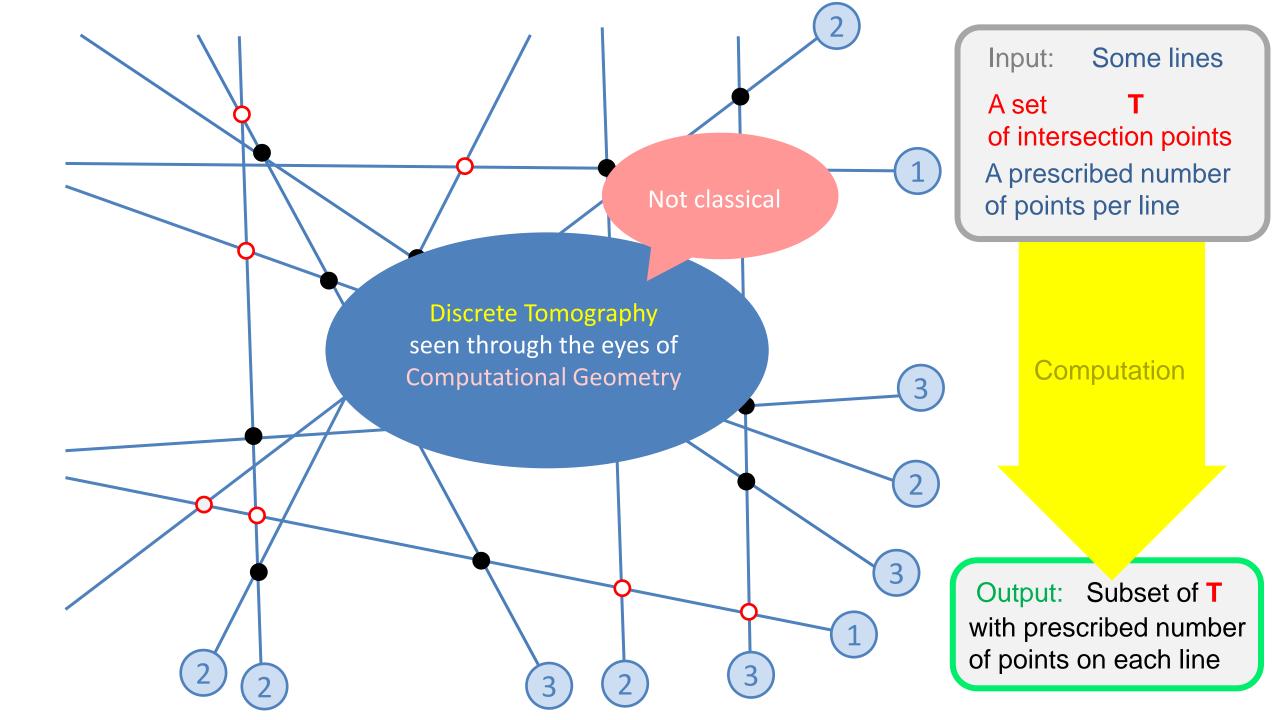
Algebraic rewriting:

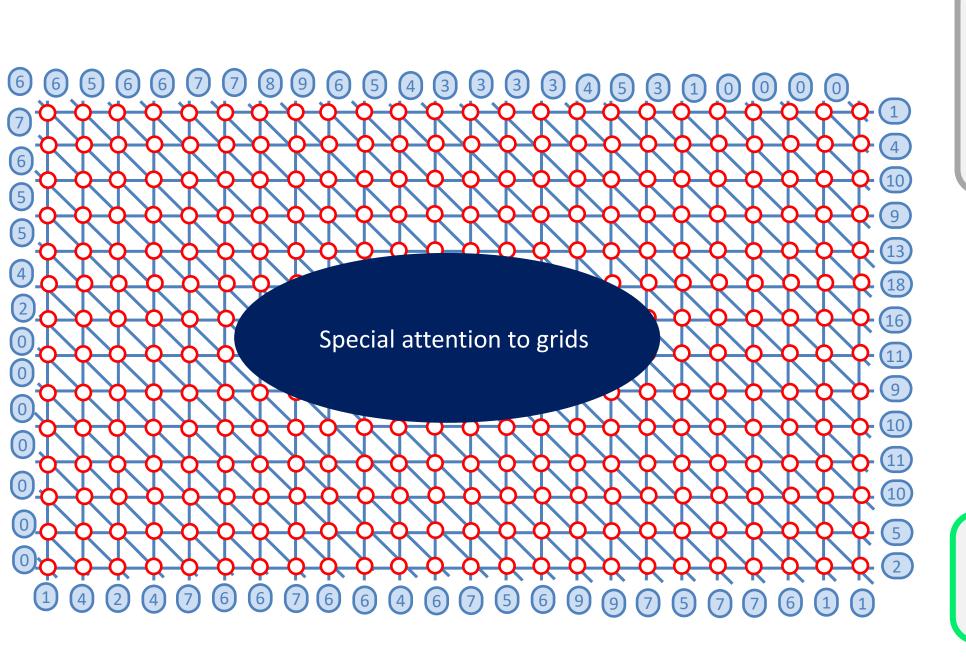
Solve A_Tx=B
with
unknown vector x in {0,1}ⁿ







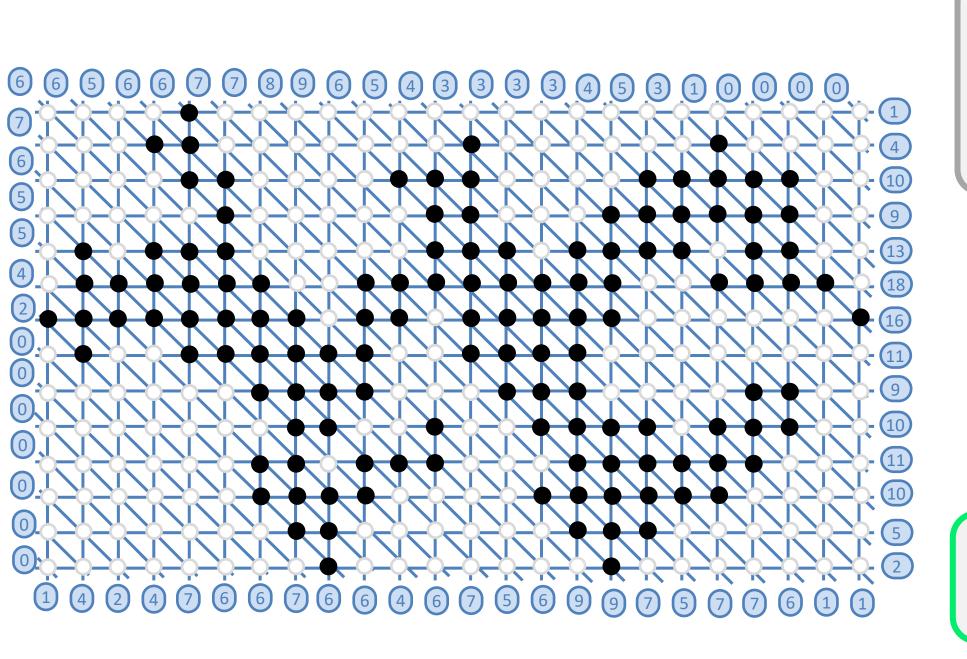




Input: Some lines

A set **T**of intersection points
A prescribed number
of points per line

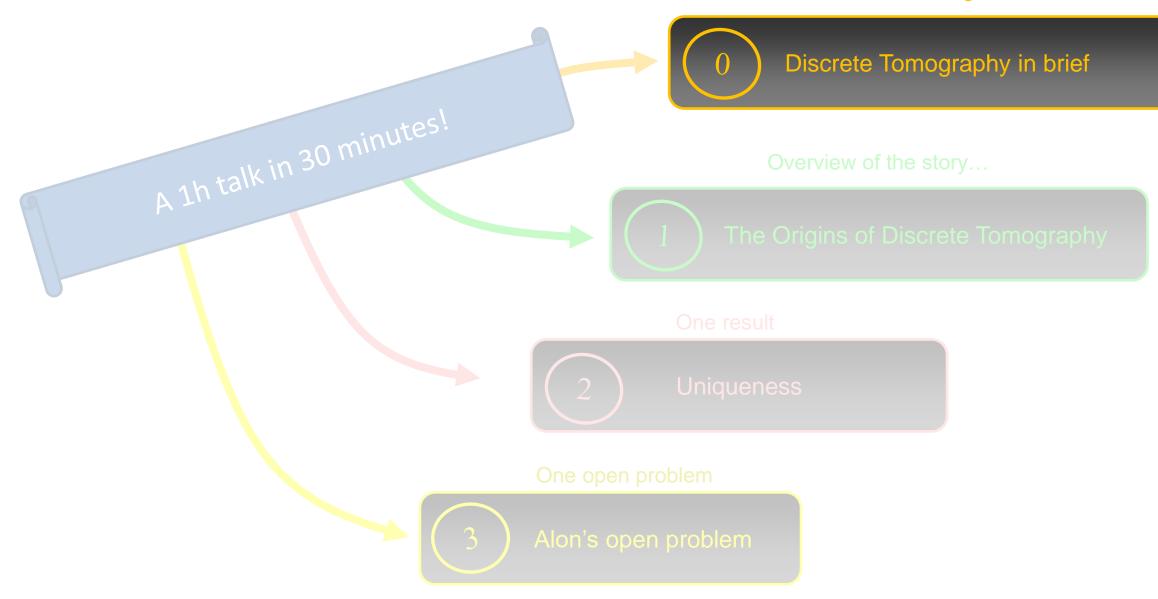
Computation

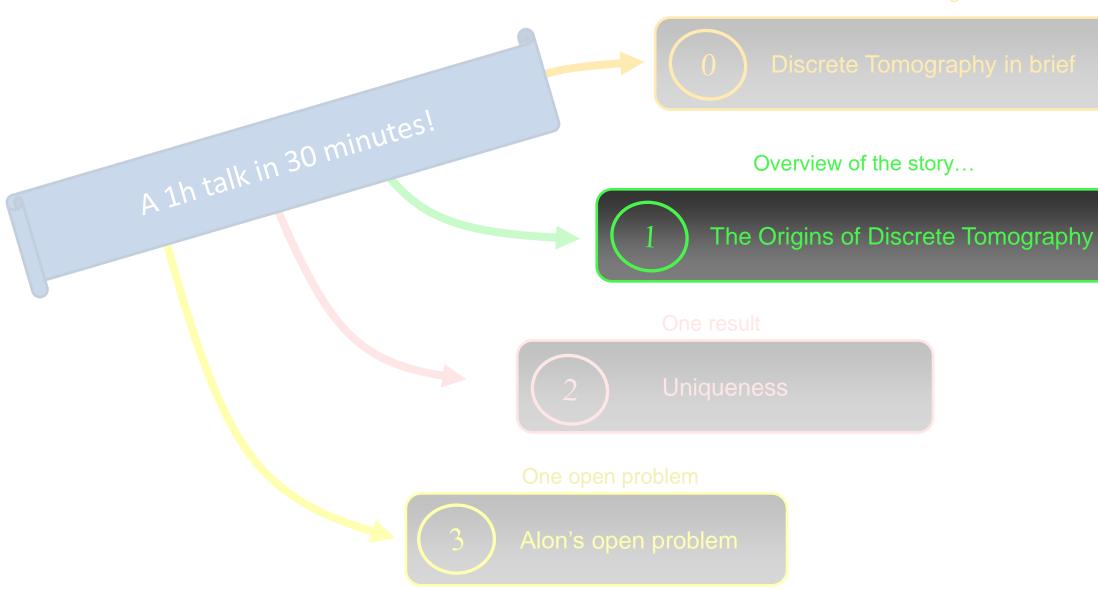


Input: Some lines

A set **T**of intersection points
A prescribed number
of points per line

Computation



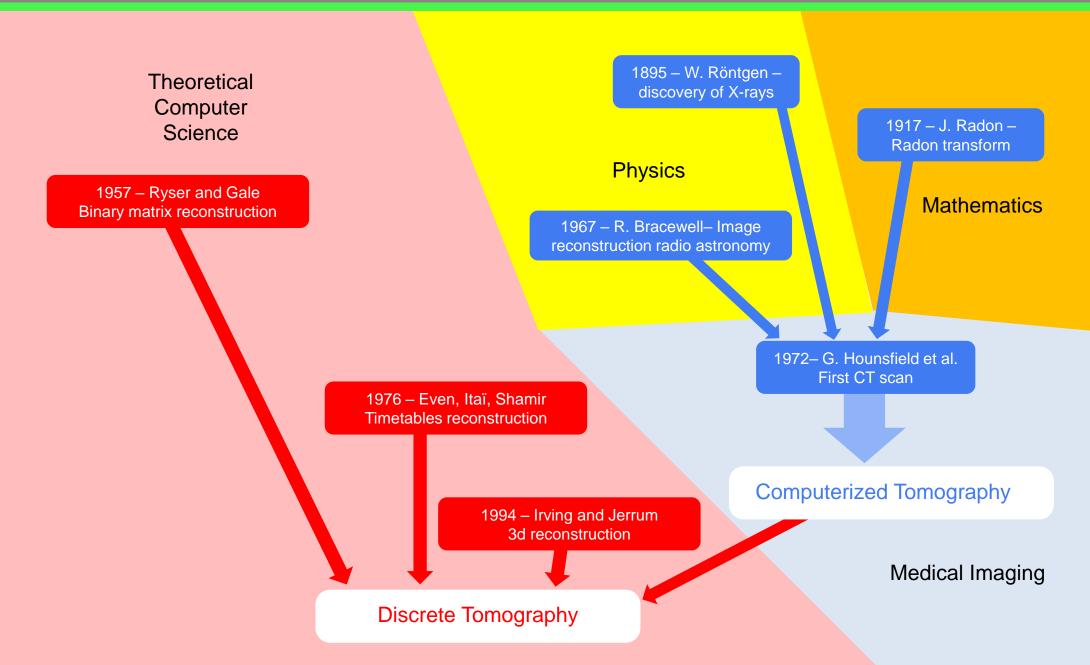


Alberto Del Lungo (1965-2003)

Attila Kuba (1953-2006)

Alain Daurat (1973-2010)

Maurice Nivat (1937-2017)



Theoretical Computer Science

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen – discovery of X-rays

Physics

1967 – R. Bracewell– Image econstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

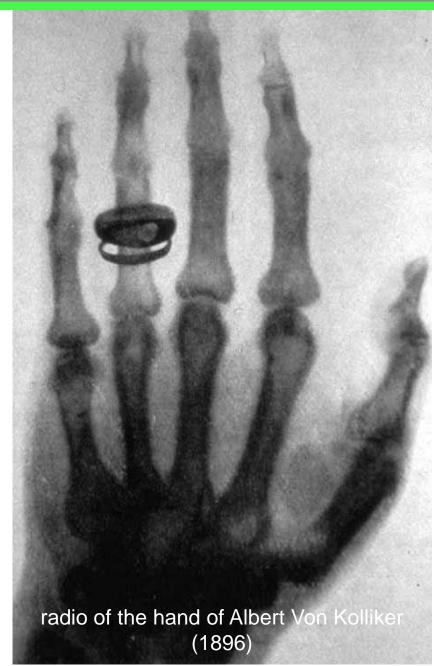
First CT scan

1994 – Irving and Jerrum

Discrete Tomography

Computerized Tomography

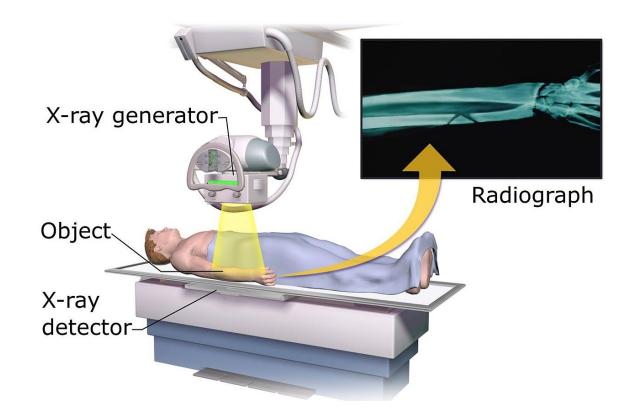
Medical Imaging



radio of the hand of his wife (1895)

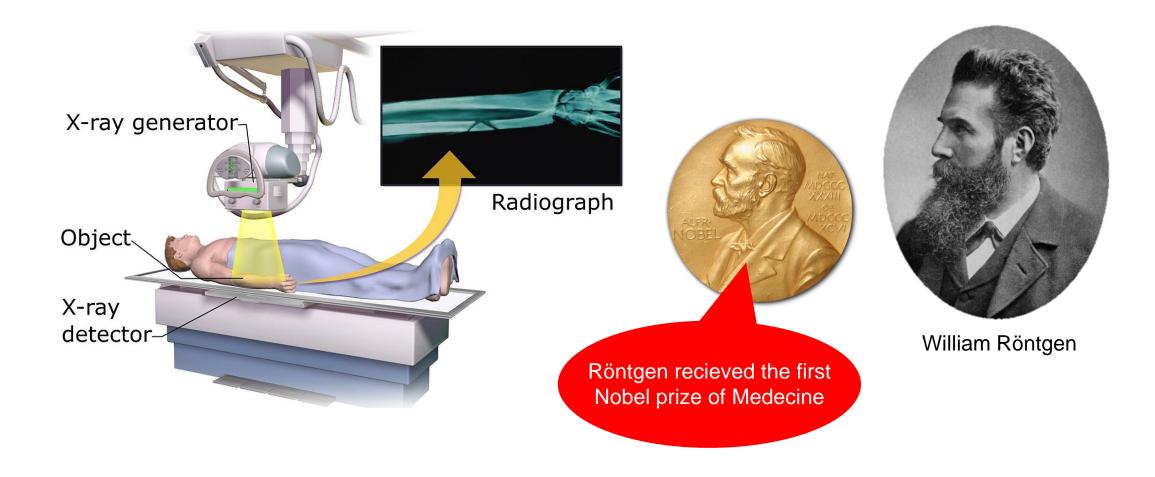
William Röntgen

1895: William Röntgen discovers the X-rays and makes the first Röntgenograms



William Röntgen

The discovery of X-rays and radiography marks the birth of Medical Imaging.



The discovery of X-rays and radiography marks the birth of Medical Imaging.

Theoretical Computer Science

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen – discovery of X-rays

Physics

1967 – R. Bracewell– Image econstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

First CT scan

1994 – Irving and Jerrum

Discrete Tomography

Computerized Tomography

Medical Imaging

Theoretical Computer Science

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen discovery of X-rays

Physics

1967 – R. Bracewell– Image econstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

1972– G. Hounsfield et al. First CT scan

1994 – Irving and Jerrum

Discrete Tomography

Computerized Tomography

Medical Imaging

A.M. Cormack

G.H. Hounsfield

The EMI CT-scanner (the first scanner)

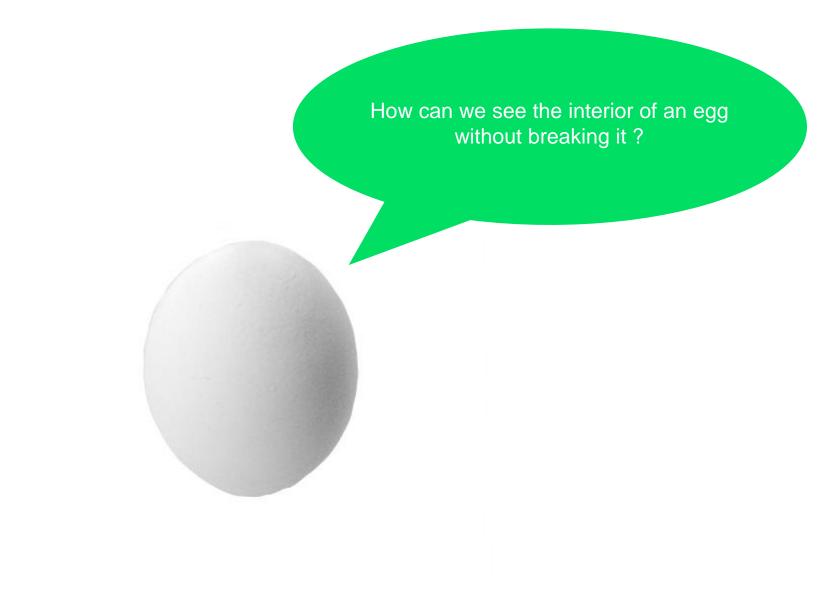
The first CT scanner has been developped by Allan McLeod Cormack and Godfrey Hounsfield in 1971.

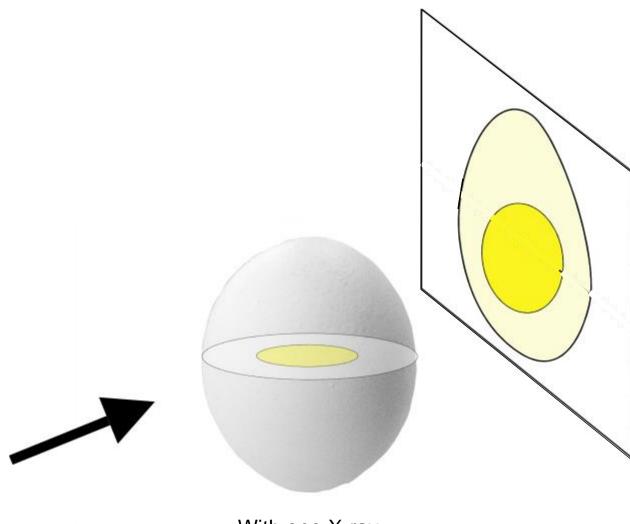
A.M. Cormack

G.H. Hounsfield

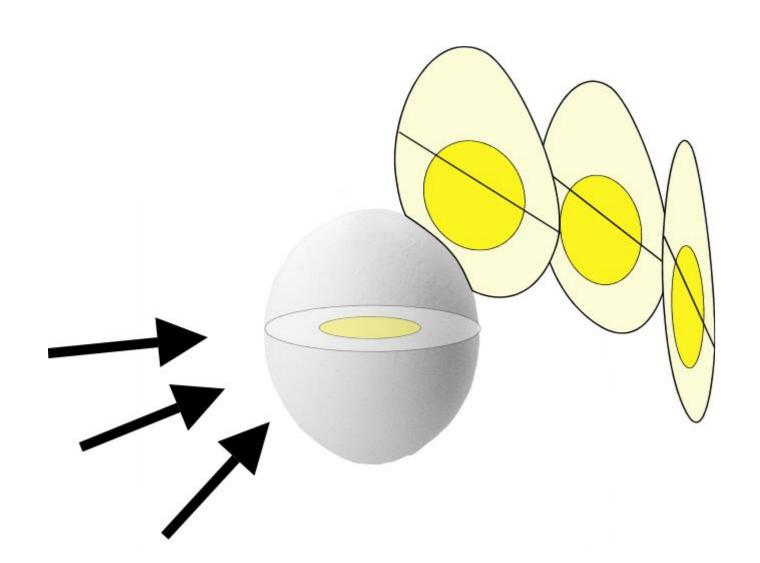
The EMI CT-scanner (the first scanner)

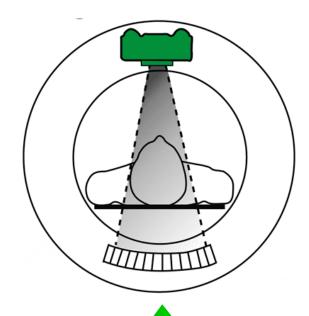
The first CT scanner has been developped by Allan McLeod Cormack and Godfrey Hounsfield in 1971.



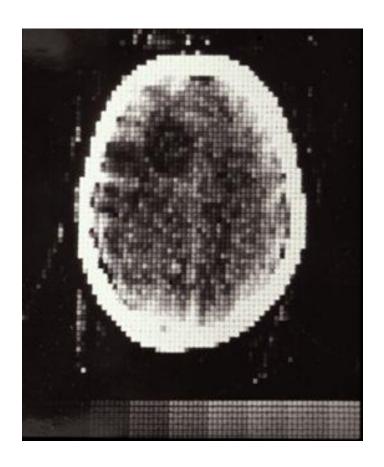


With one X-ray





Reconstruction problem:
Compute the image from the X-rays



The first clinical scan with an EMI scanner Atkinson Morley hospital (1971)

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen - discovery of X-rays

Physics

1967 – R. Bracewell– Image econstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

976 – Even, Itaï, Shamir

1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

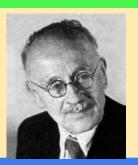
1972– G. Hounsfield et al. First CT scan

Computerized Tomography

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen discovery of X-rays

Physics

1967 – R. Bracewell– Image reconstruction radio astronomy



1917 – J. Radon – Radon transform

Mathematics

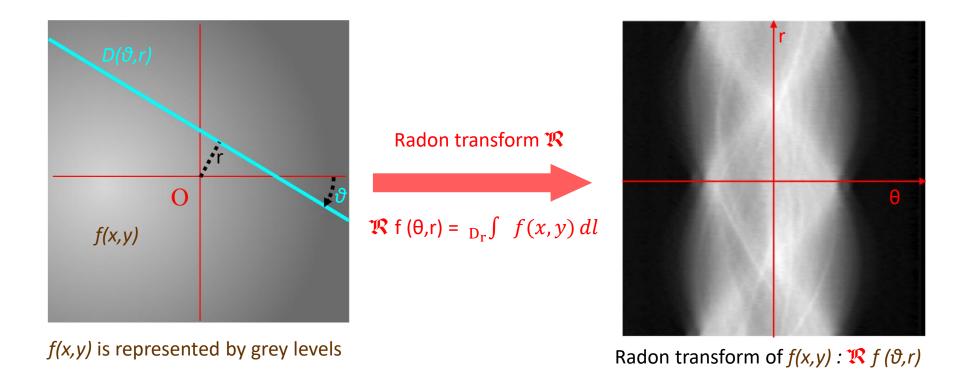
1976 – Even, Itaï, Shamir

1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

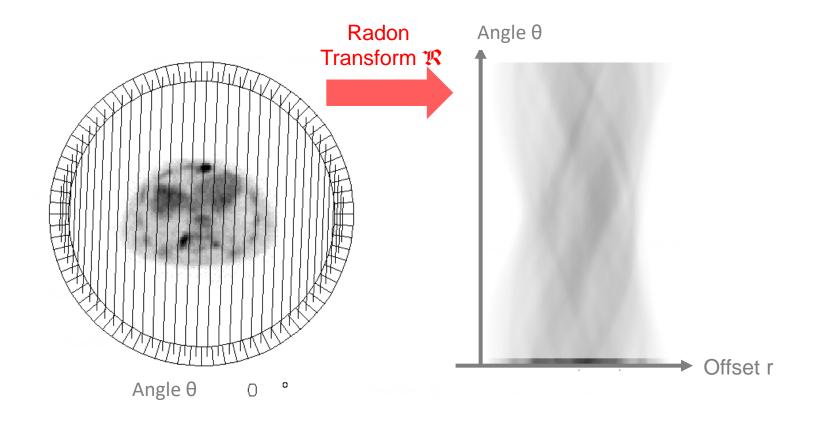
Computerized Tomography

1972– G. Hounsfield et al. First CT scan

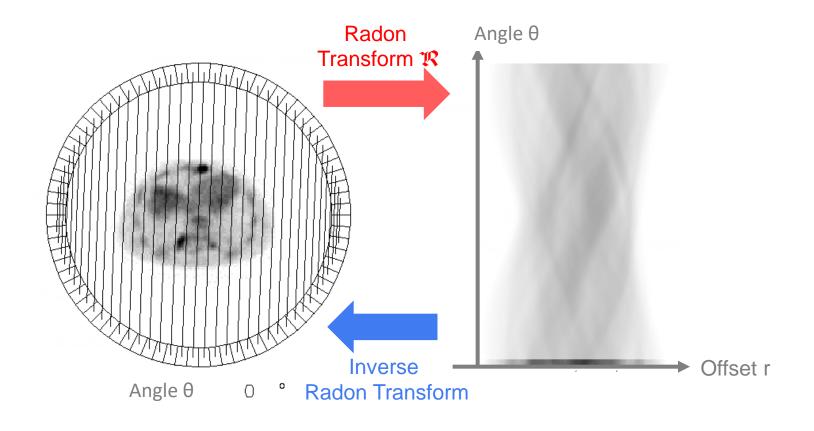


Johann Radon (1887-1956) introduced in 1917 the mathematical transform now called the *Radon transform*.

 $\Re f(\vartheta,r)$ is represented by its grey level



Johann Radon (1887-1956) introduced in 1917 the mathematical transform now called the *Radon transform*.

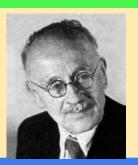


Johann Radon (1887-1956) introduced in 1917 the mathematical transform now called the *Radon transform*.

1957 – Ryser and Gale Binary matrix reconstruction 1895 – W. Röntgen discovery of X-rays

Physics

1967 – R. Bracewell– Image reconstruction radio astronomy



1917 – J. Radon – Radon transform

Mathematics

1976 – Even, Itaï, Shamir

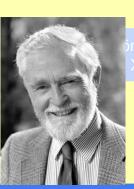
1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

Computerized Tomography

1972– G. Hounsfield et al. First CT scan

1957 – Ryser and Gale Binary matrix reconstruction



1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon - Radon transform

Mathematics

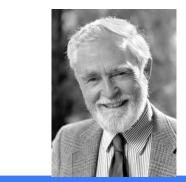
1976 – Even, Itaï, Shamir Timetables reconstruction

1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

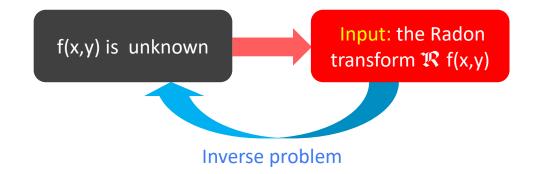
First CT scan

Computerized Tomography



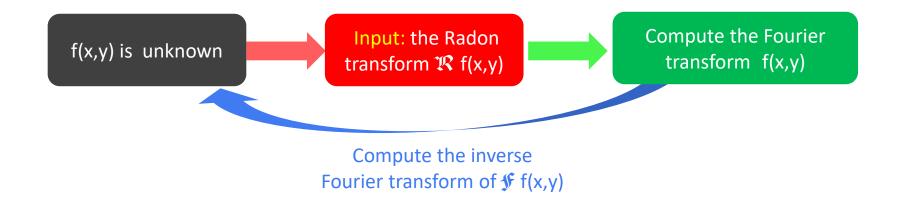
1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform



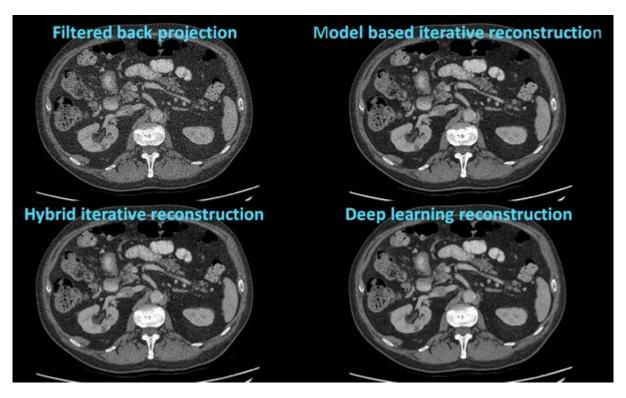
1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform



Many practical algorithms

(Filtered Back Projection, Algebraic Reconstruction Tecniques... and more recent ones)



L. Oostveen, K. Boedeker, M. Brink, M. Prokop, F. de Lange and I. Sechopoulos. "*Physical evaluation of an ultra-high-resolution CT scanner*", 2020.

1957 – Ryser and Gale Binary matrix reconstruction

1967 – R. Bracewell– Image econstruction radio astronomy

1917 – J. Radon - Radon transform

Mathematics

1976 – Even, Itaï, Shamir

1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

Computerized Tomography

1957 – Ryser and Gale Binary matrix reconstruction

1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

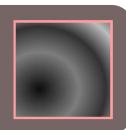
1976 – Even, Itaï, Shamir Timetables reconstruction

> 1994 – Irving and Jerrum 3d reconstruction

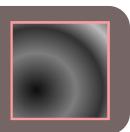
Discrete Tomography

Computerized Tomography

Computerized Tomography deals with the reconstruction of a continuous function $f:[0, 1]^2 \rightarrow [0, 1]$ on a continuous domain



Computerized Tomography deals with the reconstruction of a continuous function $f:[0, 1]^2 \rightarrow [0, 1]$ on a continuous domain



Geometric Tomography deals with the reconstruction of a binary function $f:[0,1]^2 \rightarrow \{0,1\}$ on a continuous domain $f:[0,1]^2 \rightarrow \{0,1\}^2$

Computerized Tomography deals with the reconstruction of a continuous function $f:[0, 1]^2 \rightarrow [0, 1]$

on a continuous domain

Geometric Tomography deals with the reconstruction

of a binary function

on a continuous domain

 $f: [0, 1]^2 \rightarrow \{0, 1\}$

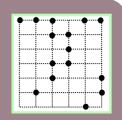
namely a subset of [0, 1] 2

Discrete Tomography deals with the reconstruction

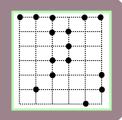
of a binary function on a discrete domain

 $f: Lattice \rightarrow \{0, 1\}$

namely a lattice set



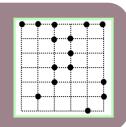
Discrete Tomography deals with the reconstruction of a binary function $f: Lattice \to \{0\ ,\ 1\}$ on a discrete domain namely a lattice set



Peter Schwander, physicist at AT&T Bell labs (in the 90s)

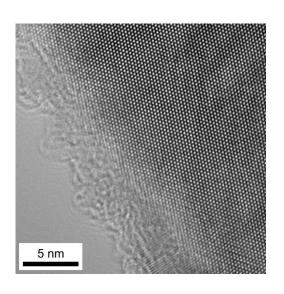
Larry Shepp, CT expert, AT&T Bell labs (in the 90s)

Discrete Tomography deals with the reconstruction of a binary function $f: Lattice \to \{0\ ,\ 1\}$ on a discrete domain namely a lattice set



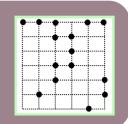
Peter Schwander, physicist at AT&T Bell labs (in the 90s)

High Resolution Transmission Electron Microscope (HRTEM)

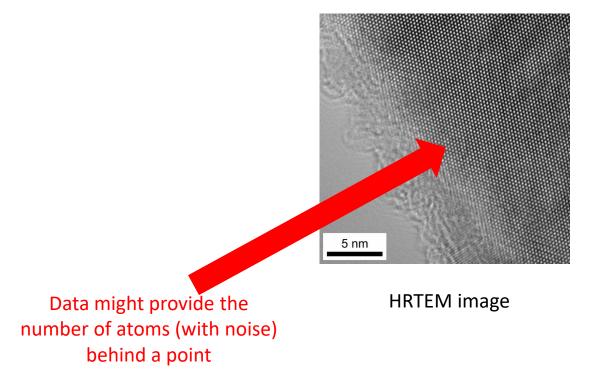


HRTEM image

Discrete Tomography deals with the reconstruction of a binary function $f: Lattice \rightarrow \{0, 1\}$ on a discrete domain namely a lattice set

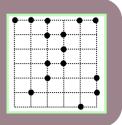


Peter Schwander, physicist at AT&T Bell labs (in the 90s)



Counting the number of atoms on a line is possible.

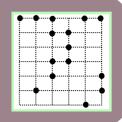
Discrete Tomography deals with the reconstruction of a binary function $f: Lattice \rightarrow \{0, 1\}$ on a discrete domain namely a lattice set

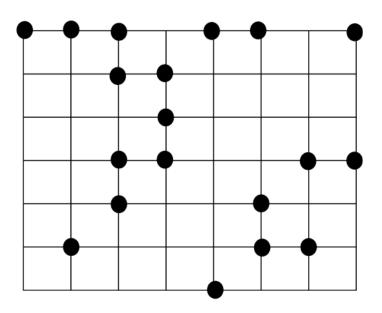


Peter Schwander, physicist at AT&T Bell labs (in the 90s) Can we recover the 3D positions of atoms?

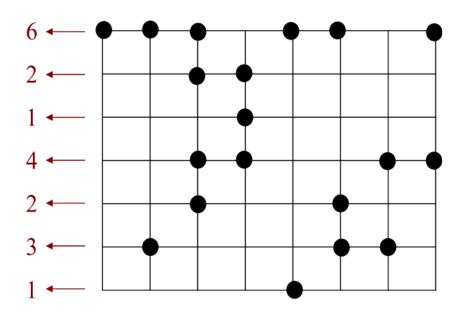
Counting the number of atoms on a line is possible.

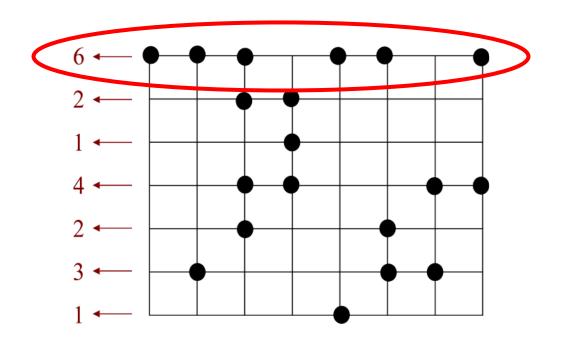
Discrete Tomography deals with the reconstruction of a binary function $f: Lattice \to \{0\ ,\ 1\}$ on a discrete domain namely a lattice set

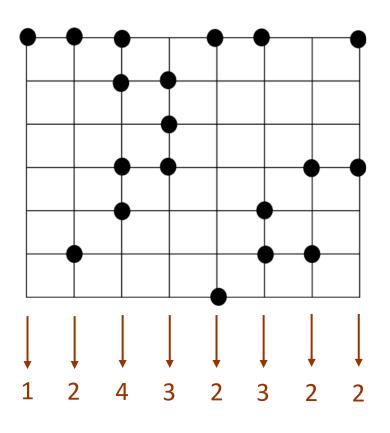


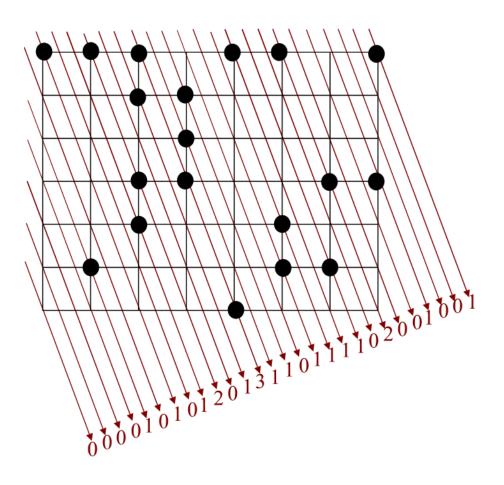


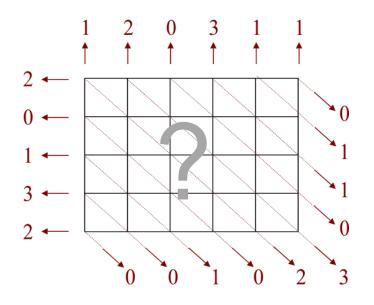
Counting the number of atoms on a line was possible.







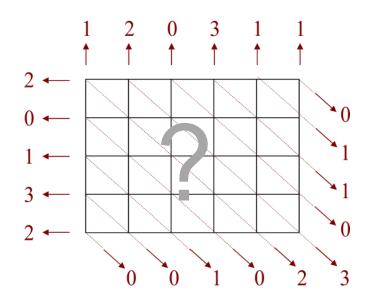




Combinatorial problem

Peter Schwander, physicist at AT&T Bell labs (in the 90s)

Can we solve this class of problems?



Combinatorial problem

Larry Shepp, CT expert, AT&T Bell labs (in the 90s)

- DIMACS

Center for Discrete mathematics and Theoretical Computer Science

Mini Symposium at DIMACS (Rutger University) in September 1994 with the title:

Discrete Tomography

Larry Shepp, CT expert, AT&T Bell labs (in the 90s)

- DIMACS

Center for Discrete mathematics and Theoretical Computer Science

Mini Symposium at DIMACS (Rutger University) in September 1994 with the title:

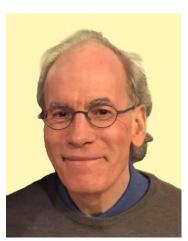
Discrete Tomography

Larry Shepp, CT expert, AT&T Bell labs (in the 90s)

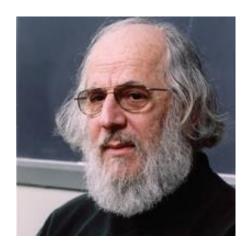
Research group in US and in Europ....

Maurice Nivat (Université Paris Diderot)

Peter Gritzmann (Technical University of Munich)



Richard Gardner (Wester Washingtom University)



Gabor Hermann (City University of New York)

Research group in US and in Europ....

1957 – Ryser and Gale Binary matrix reconstruction

1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

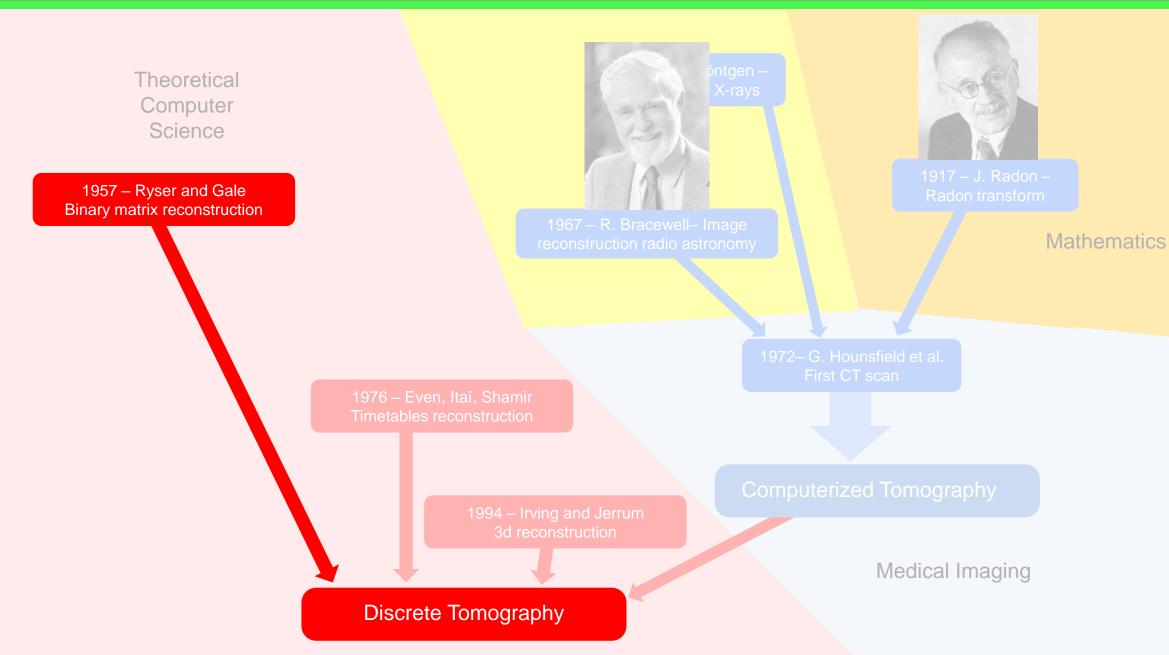
1976 – Even, Itaï, Shamir Timetables reconstruction

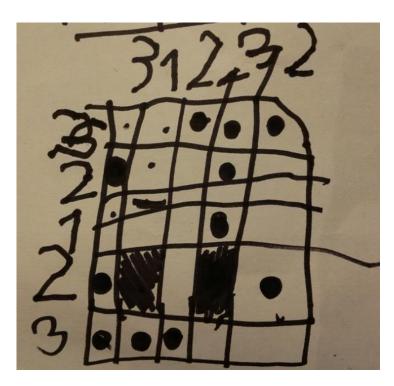
> 1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

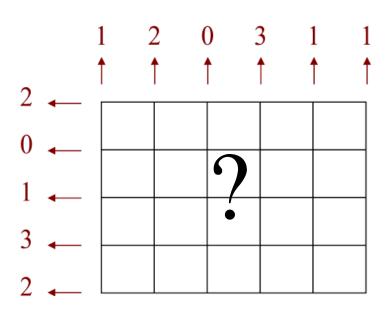
First CT scan

Computerized Tomography

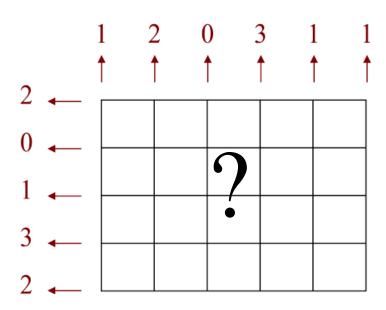




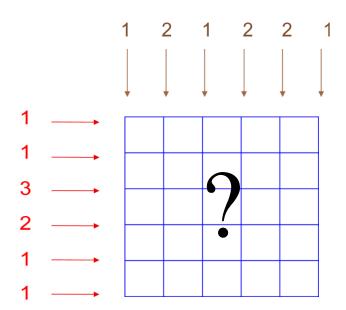
Jude (5 years old)

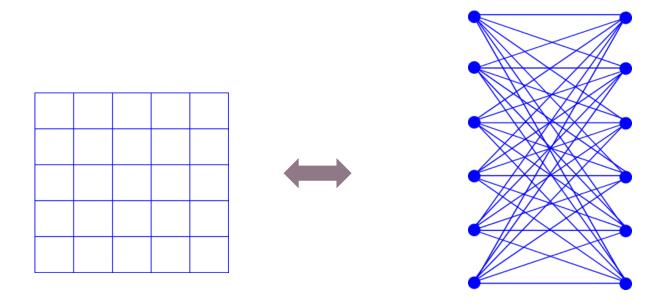


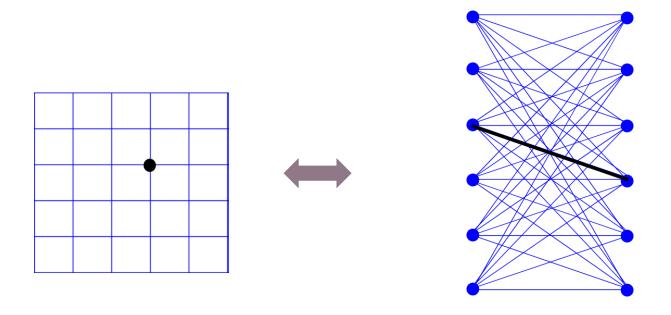
An instance with 2 directions.

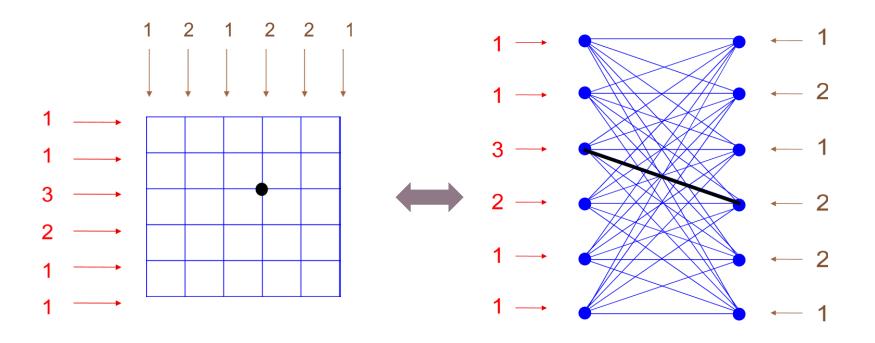


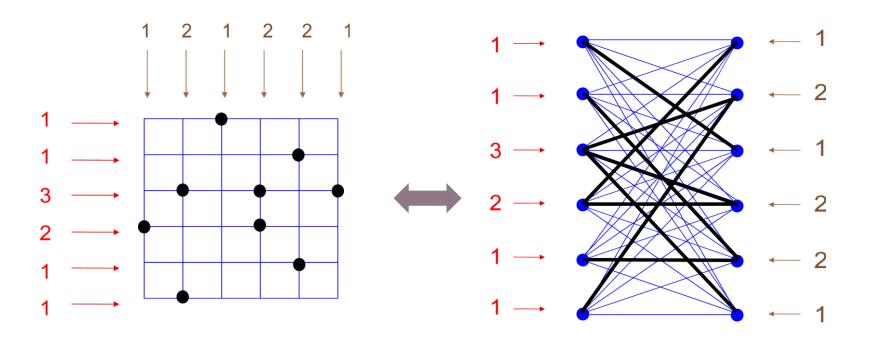
An instance with 2 directions.







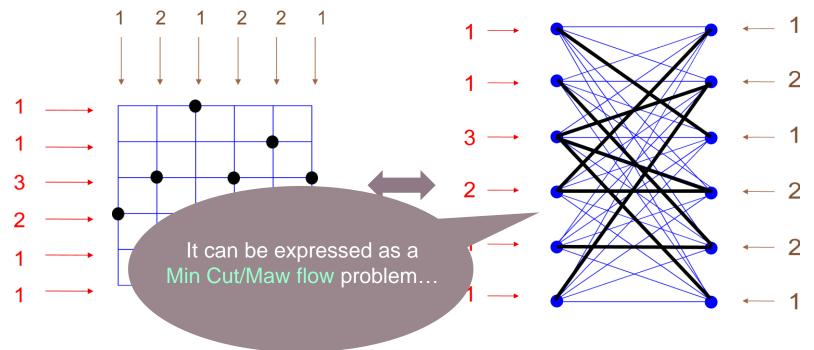




Sets of the grid = set of the complete bipartite graph.

Theorem (Gale & Ryser – 1957):

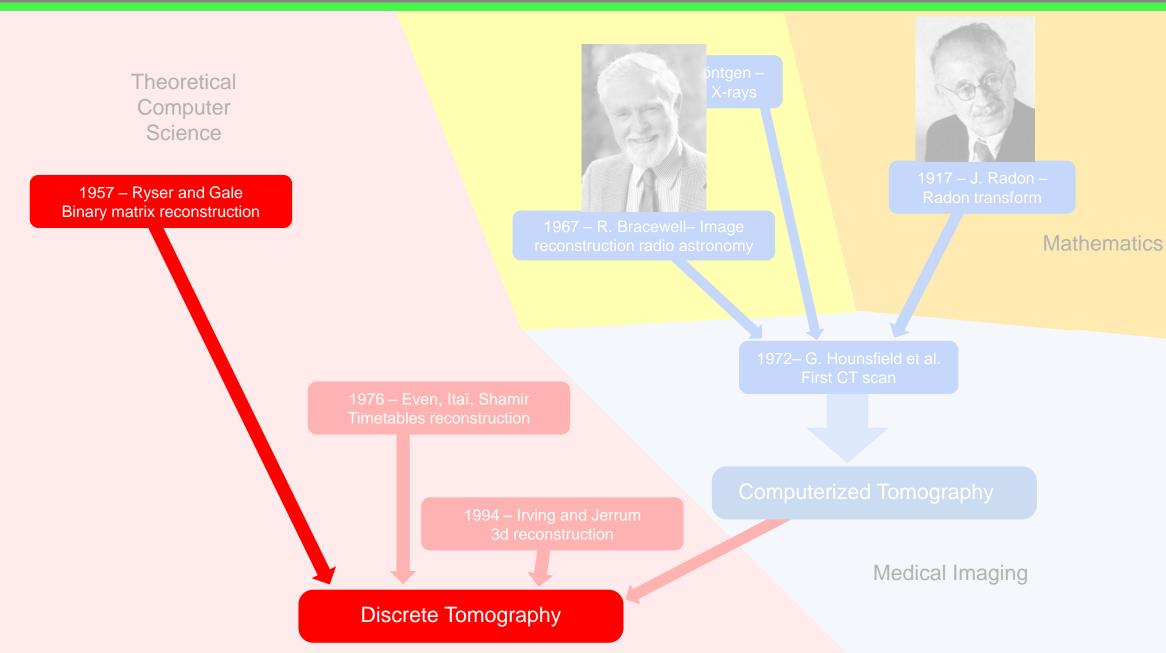
Discrete Tomography with 2 directions can be solved in polynomial time.

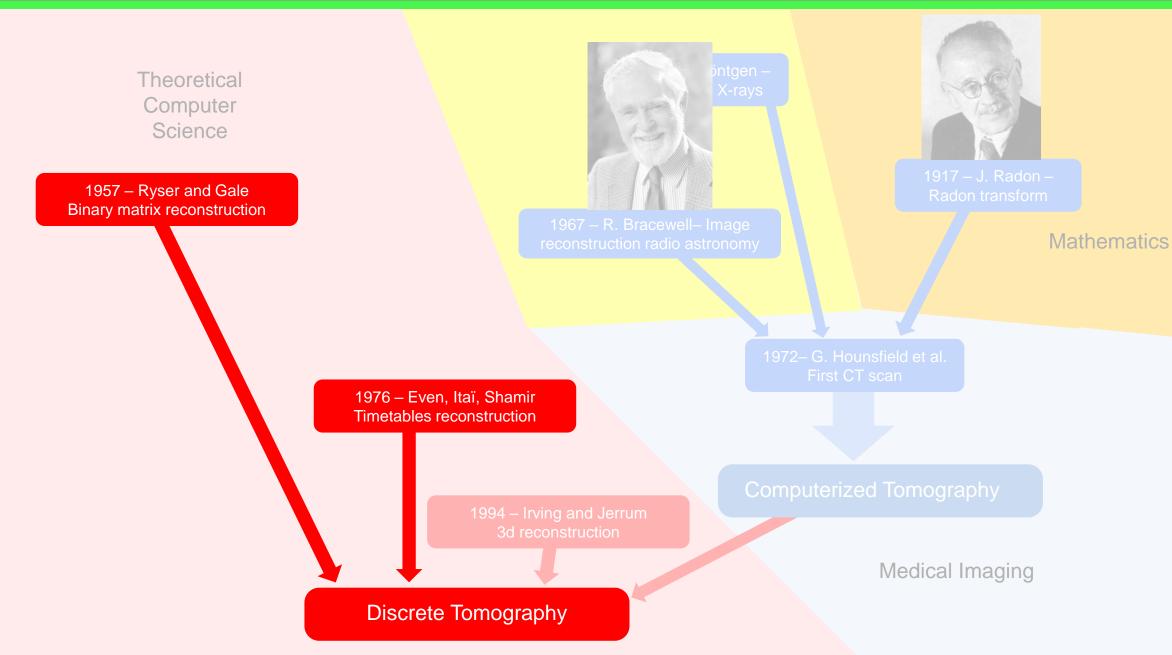


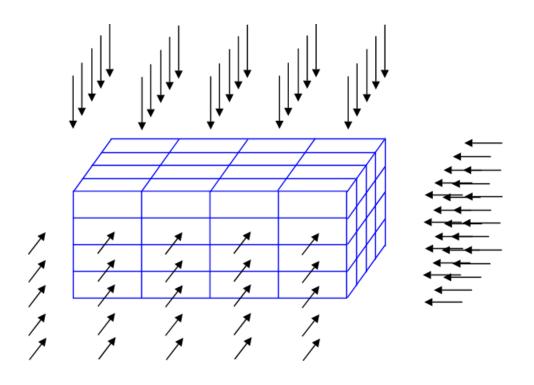
Sets of the grid = set of the complete bipartite graph.

Theorem (Gale & Ryser – 1957):

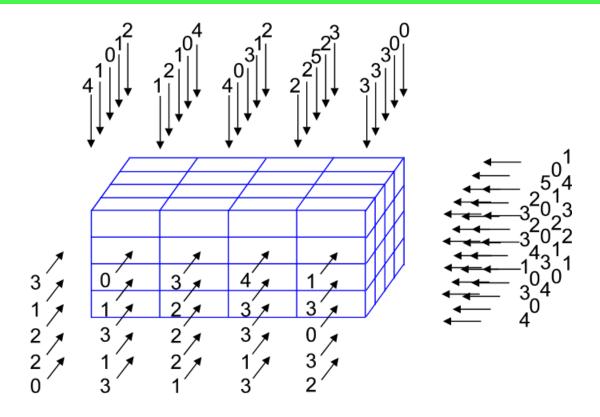
Discrete Tomography with 2 directions can be solved in polynomial time.



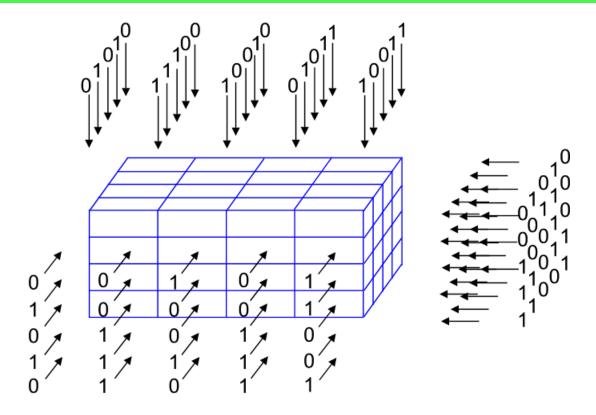




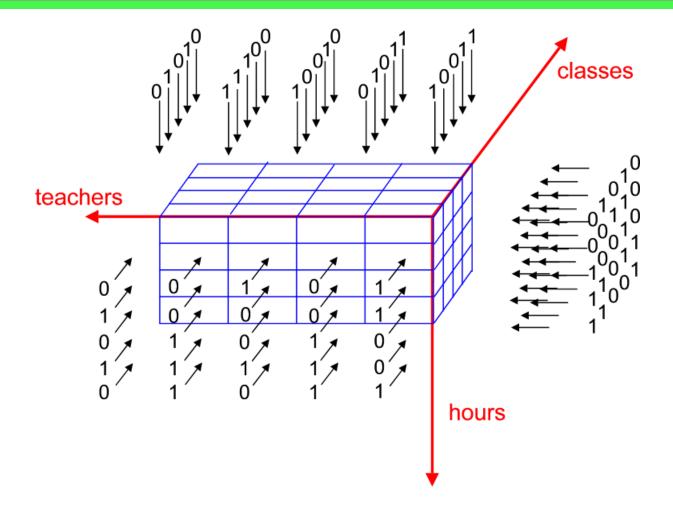
A 3D grid.

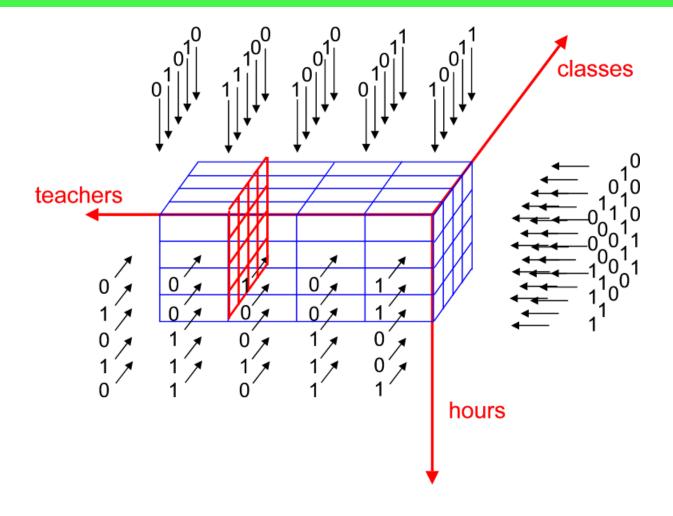


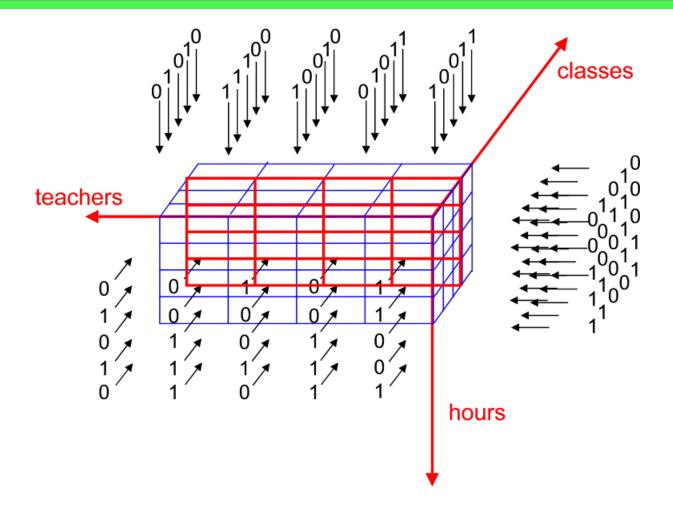
A 3D instance.

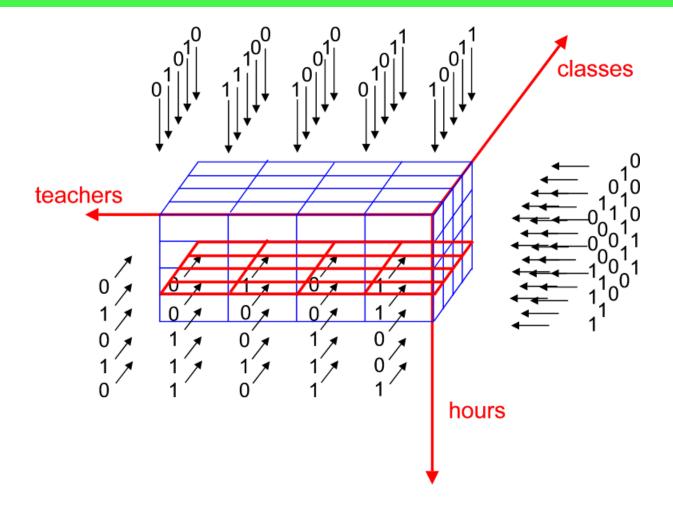


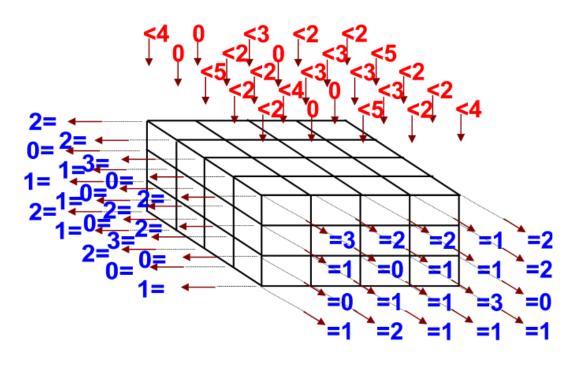
A 3D binary instance.



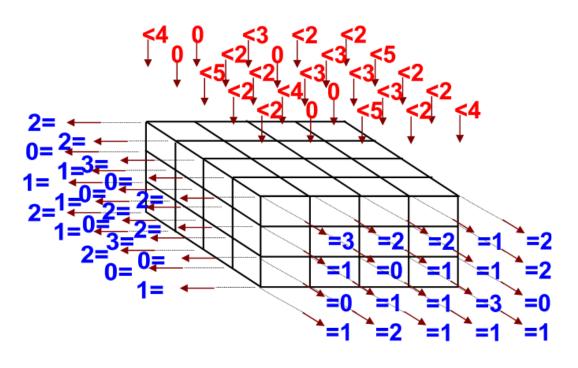








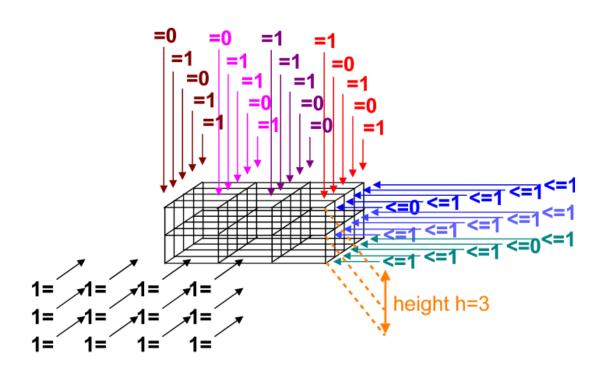
A timetable instance.



A timetable instance.

Theorem (Even, Itaï, Shamir– 1976):

Timetable problems are NP-complete.



A restricted Timetable instance.

Theorem (Even, Itaï, Shamir– 1976):

Timetable problems are NP-complete.

Theoretical Computer Science

1957 – Ryser and Gale Binary matrix reconstruction

1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

1976 – Even, Itaï, Shamir Timetables reconstruction

> 1994 – Irving and Jerrum 3d reconstruction

Discrete Tomography

First CT scan

Computerized Tomography

Medical Imaging

Theoretical Computer Science

1957 – Ryser and Gale Binary matrix reconstruction

1967 – R. Bracewell– Image reconstruction radio astronomy

1917 – J. Radon – Radon transform

Mathematics

1976 – Even, Itaï, Shamir Timetables reconstruction

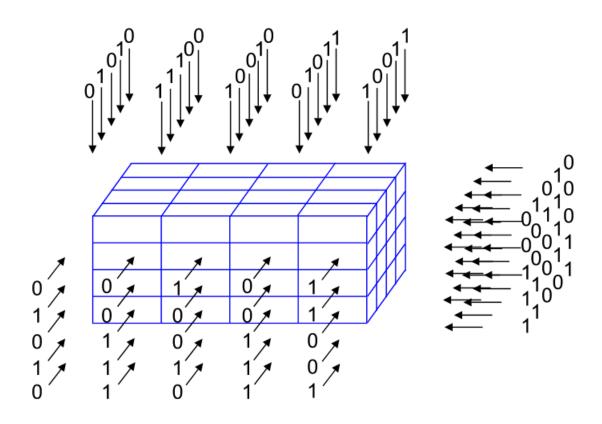
1994 – Irving and Jerrum 3d reconstruction

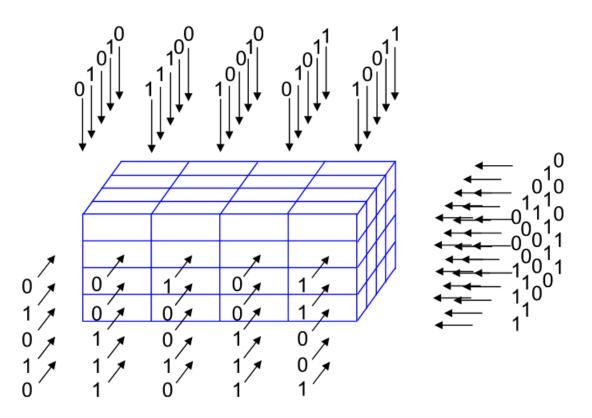
Discrete Tomography

First CT scan

Computerized Tomography

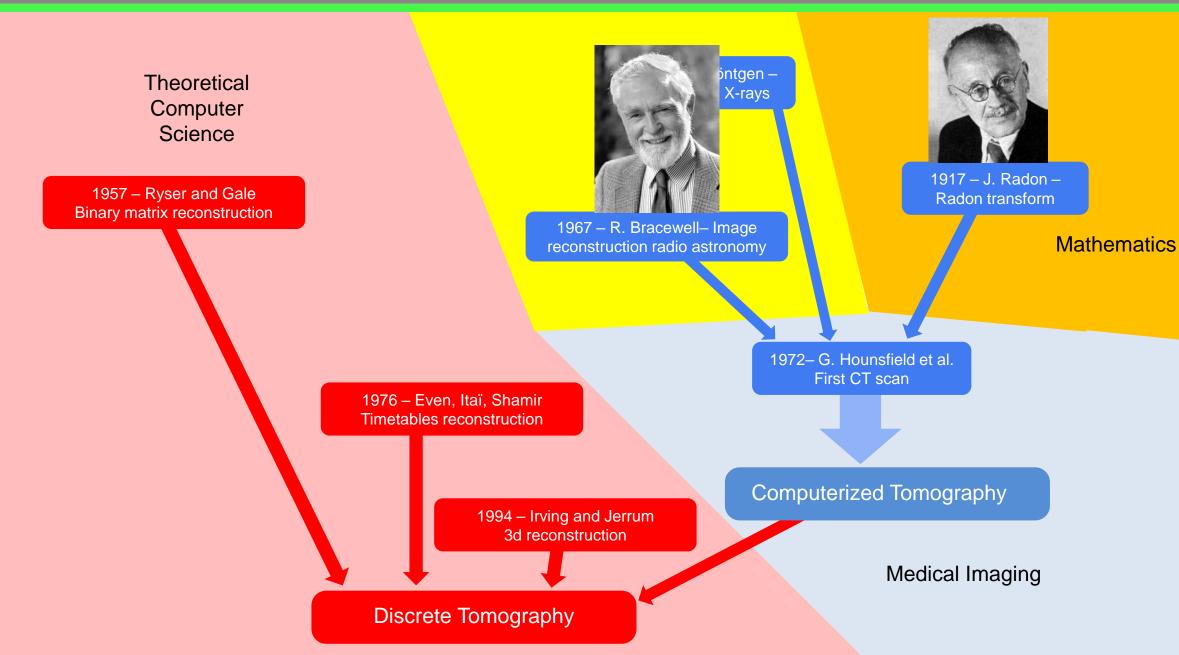
Medical Imaging



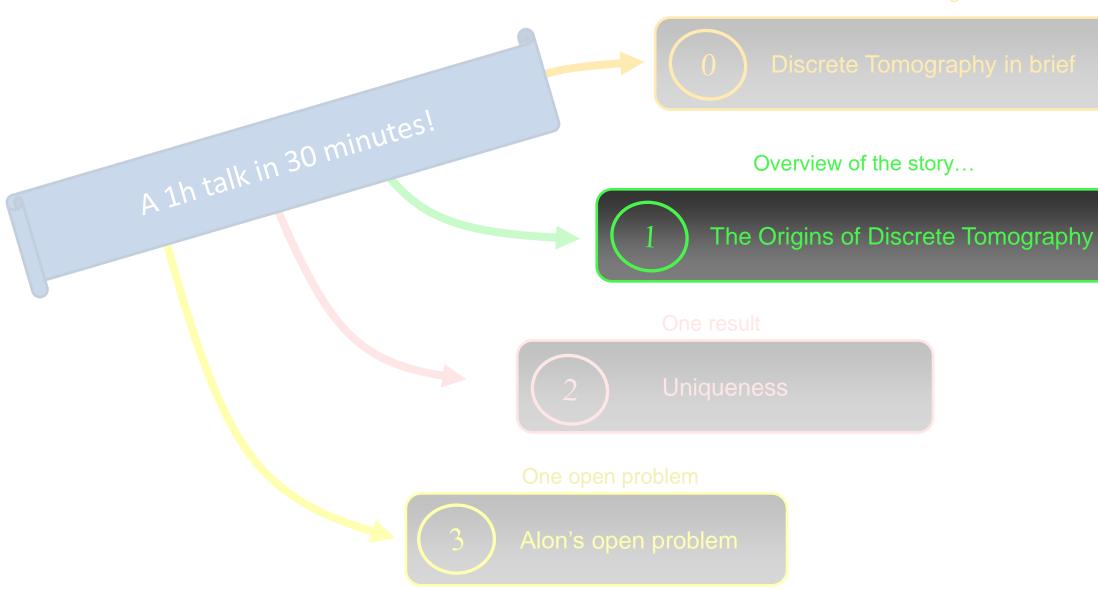


Theorem (Irving–Jerrum 1994):

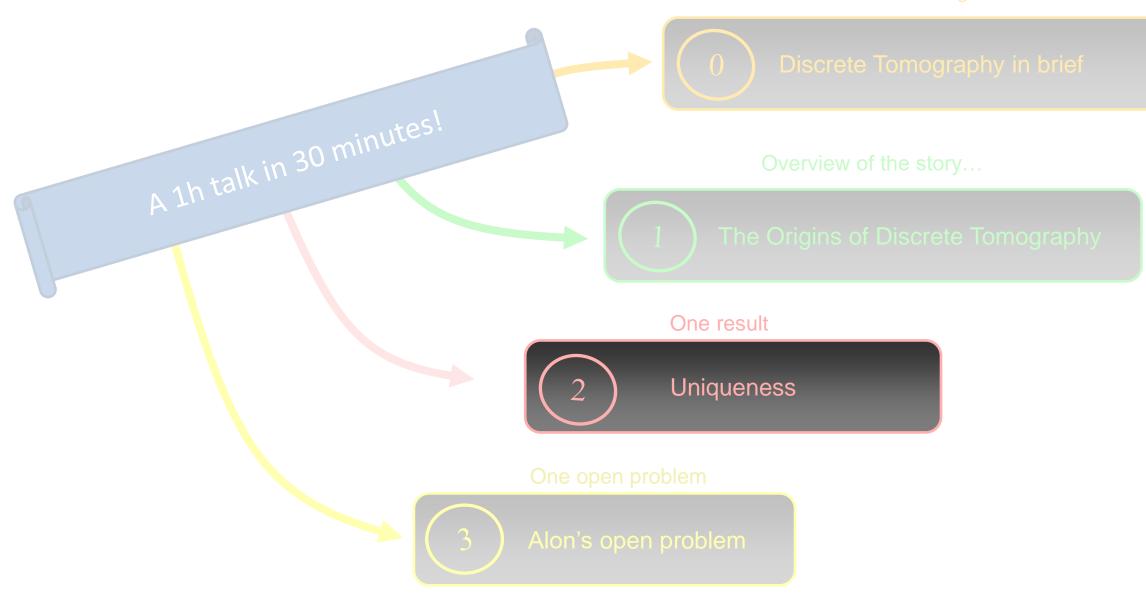
Discrete Tomography with 3 directions in 3D is NP-complete.



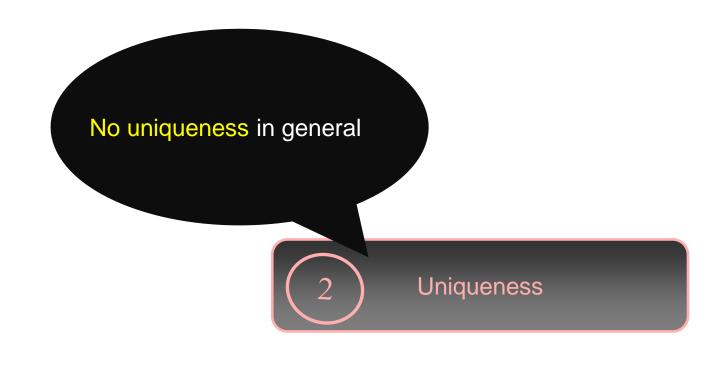
What are we talking about ?

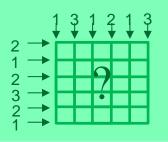


What are we talking about?

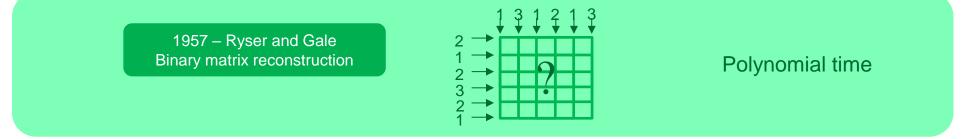


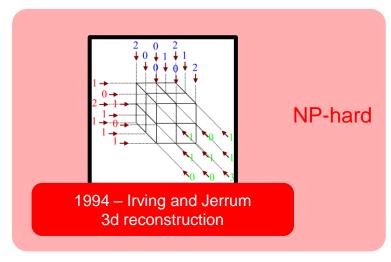
2 Uniqueness

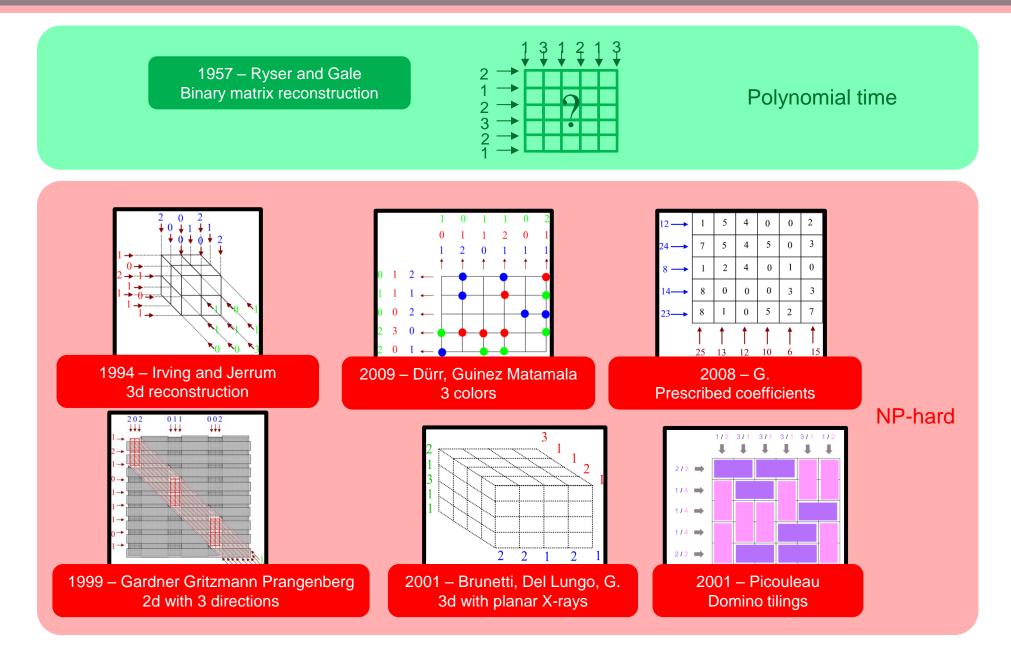


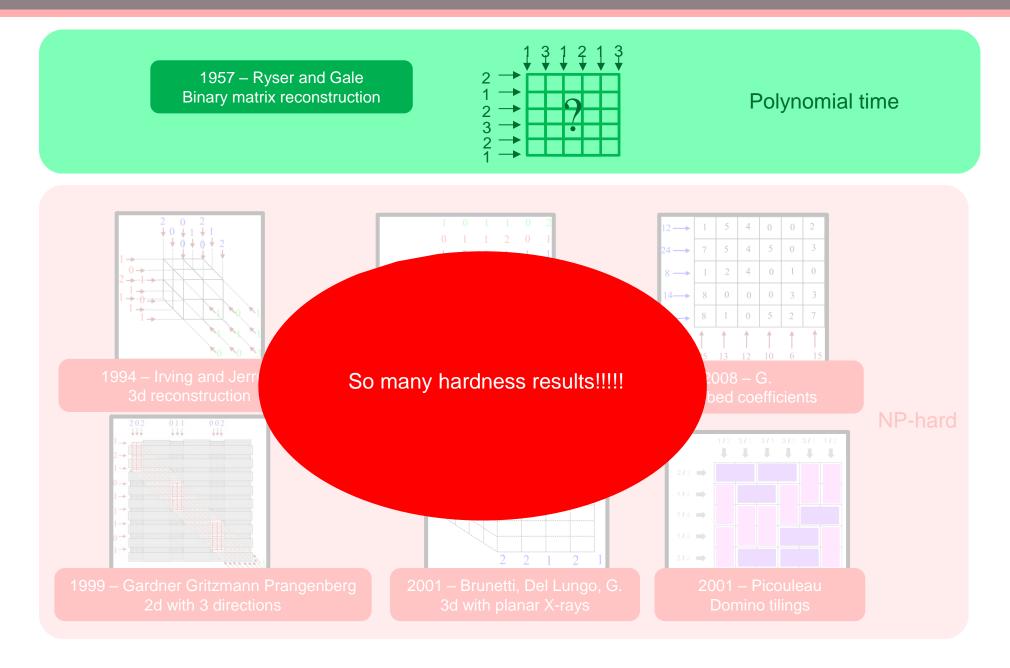


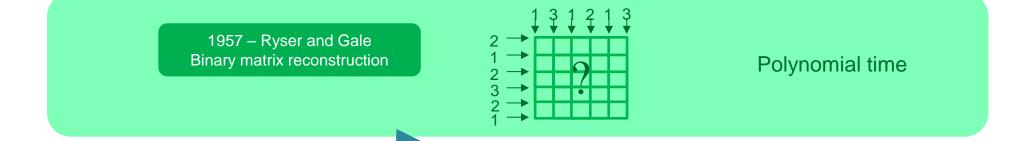
Polynomial time



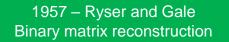


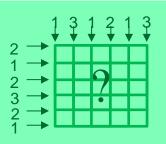






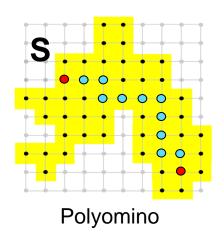
What happens if we search for a solution with some wanted geometric properties?

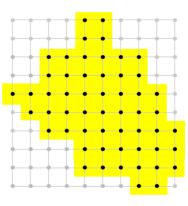




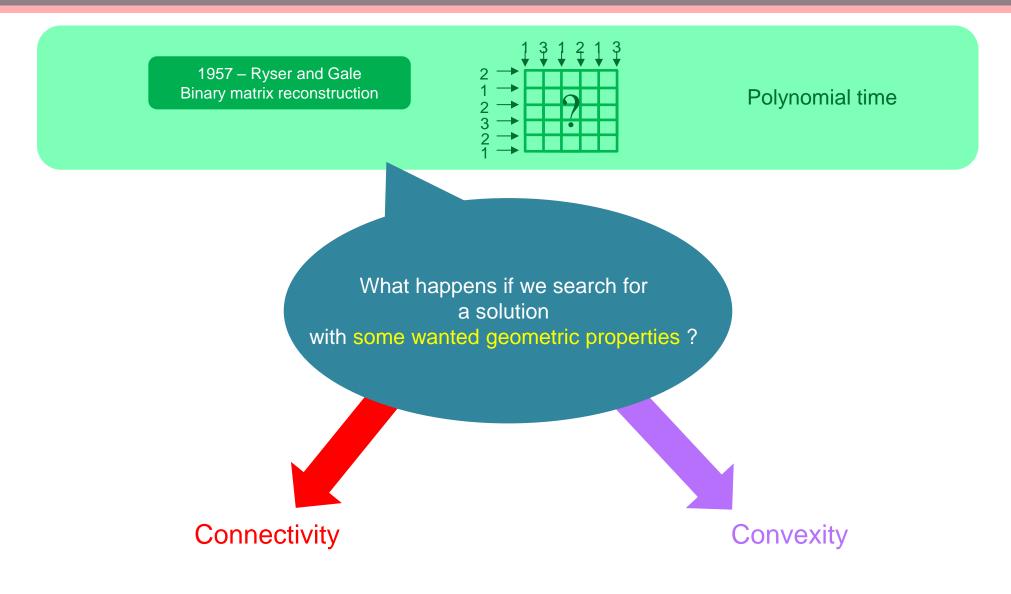
Polynomial time

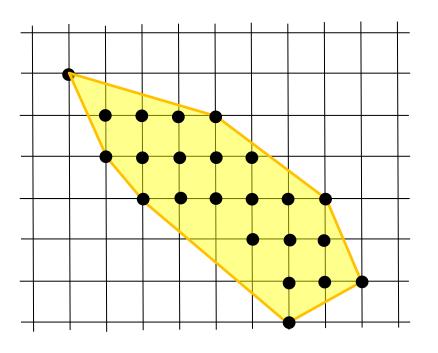
What happens if we search for a solution with some wanted geometric properties?

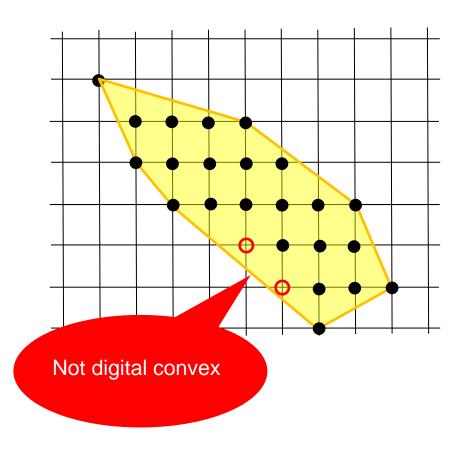


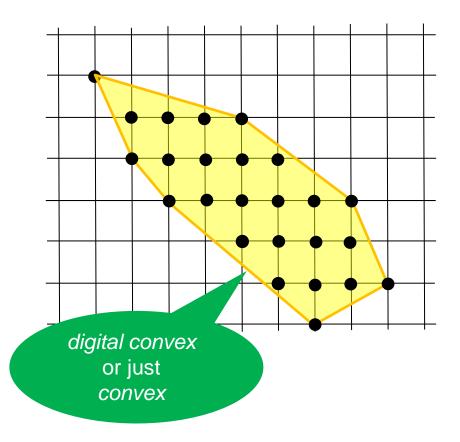


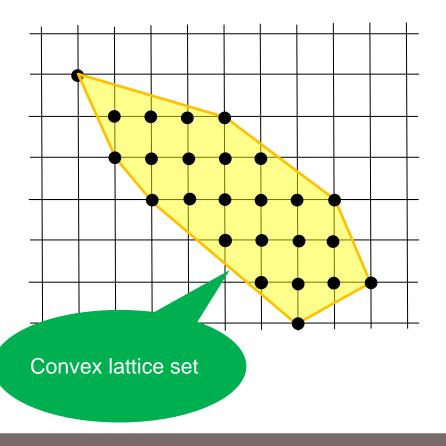
Convex lattice set











Theorem (Gardner Gritzmann1997 + Brunetti Daurat 2003):

For some directions, convex lattice sets

are uniquely determined by their X-rays
and can be reconstructed in polynomial time.

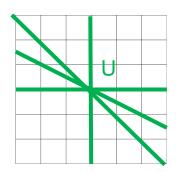
For some directions?

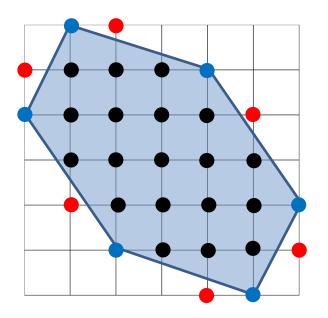
Theorem (Gardner Fritzmann1997 + Brunetti Daurat 2003):

For some directions, convex lattice sets

are uniquely determined by their X-rays

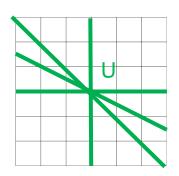
and can be reconstructed in polynomial time.

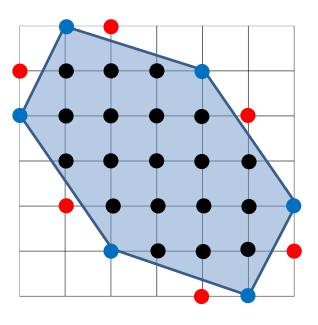


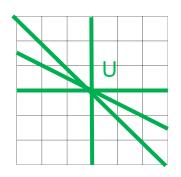


For some directions?

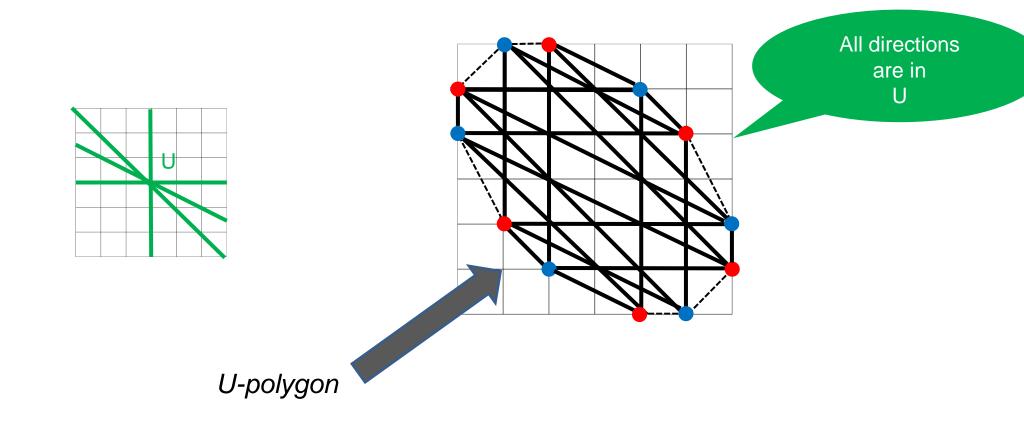
Theorem (Gardner Fritzmann1997 + Brunetti Daurat 2003):
For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.

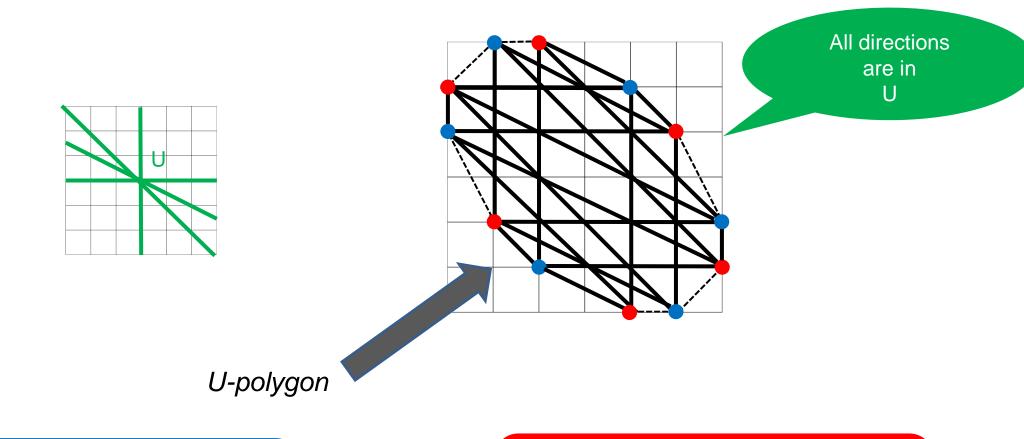








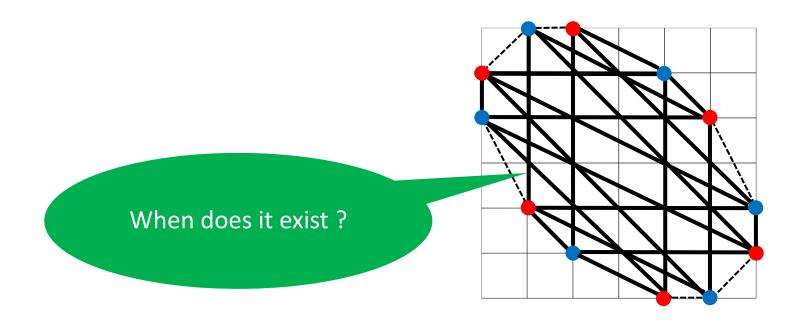




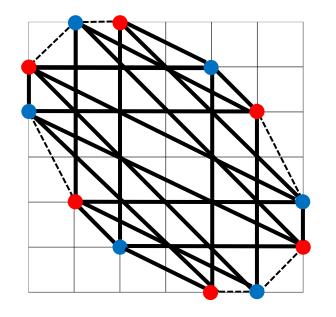
Uniqueness result for the set of directions U

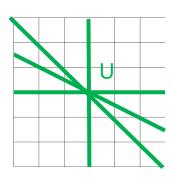
if and only if

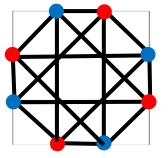
There exists NO U-polygon

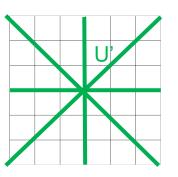


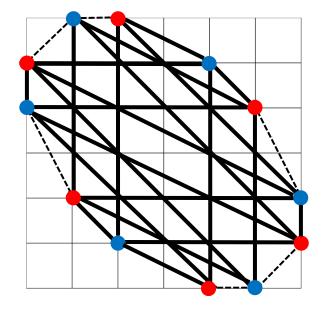
There exists NO U-polygon

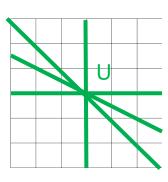




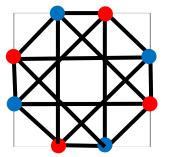


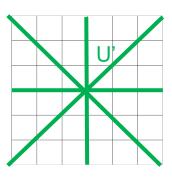


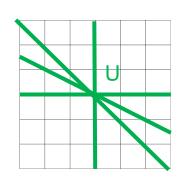




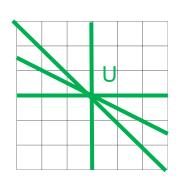
For which sets of directions U does there exist *U-polygons*?

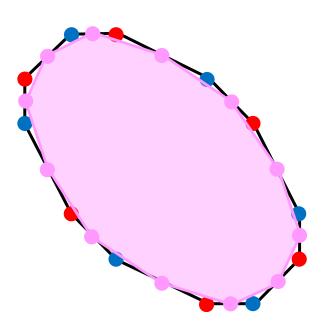


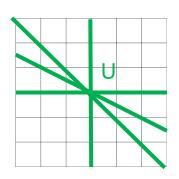


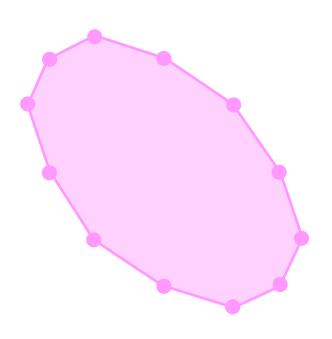


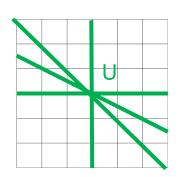


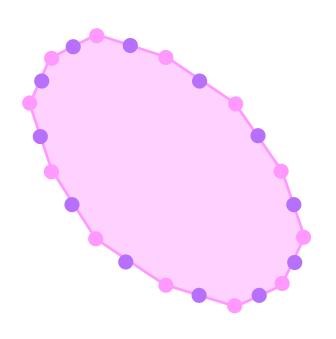


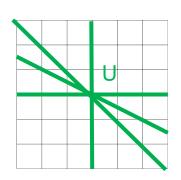


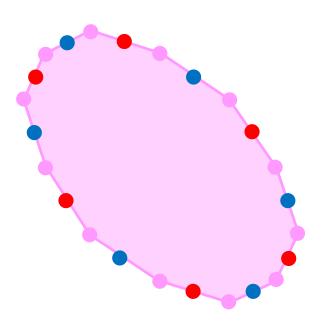


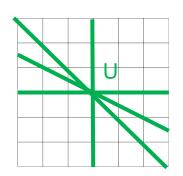


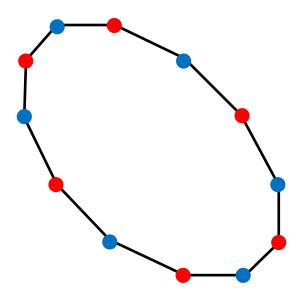


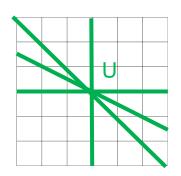


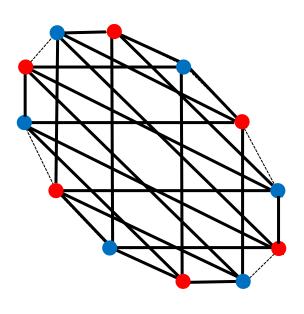


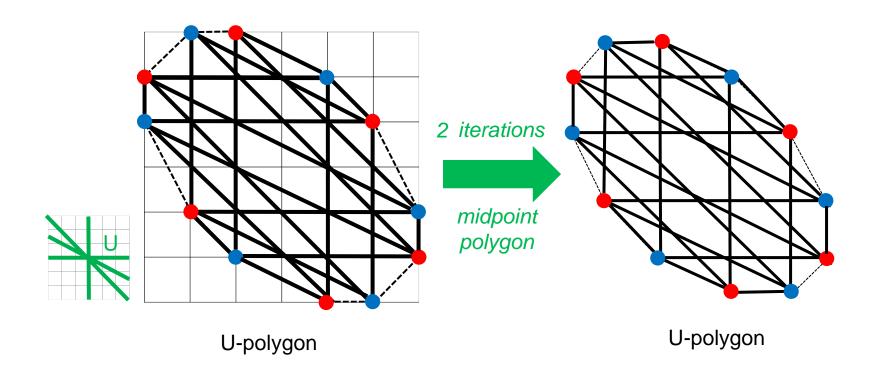


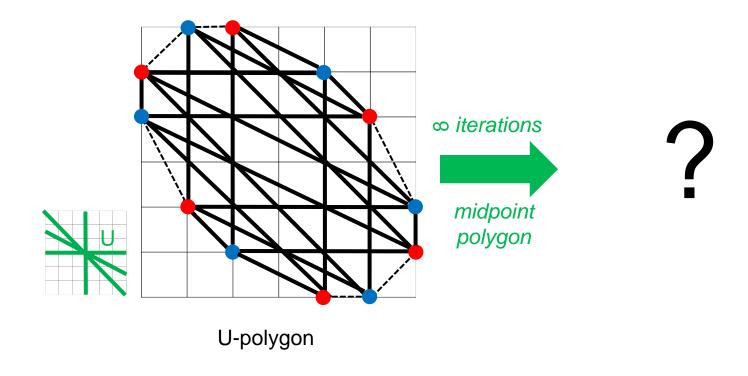


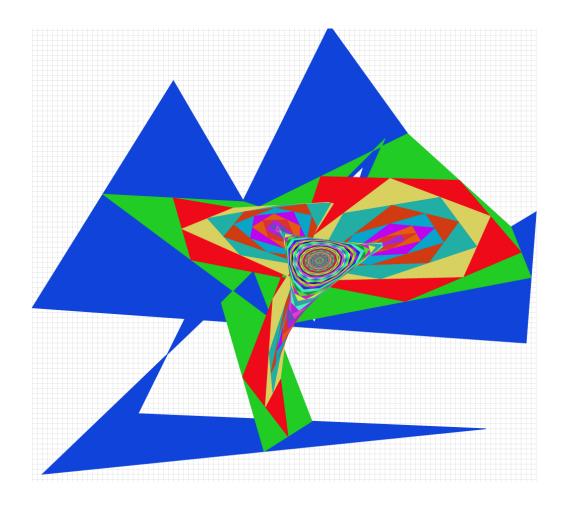




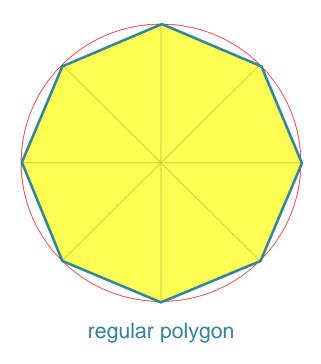




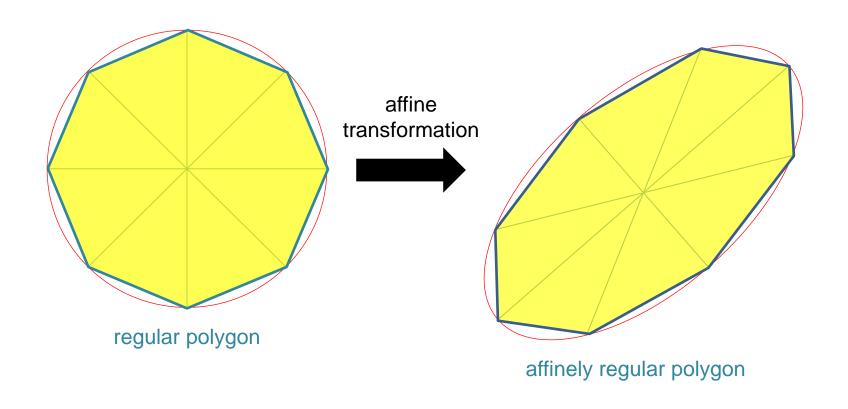




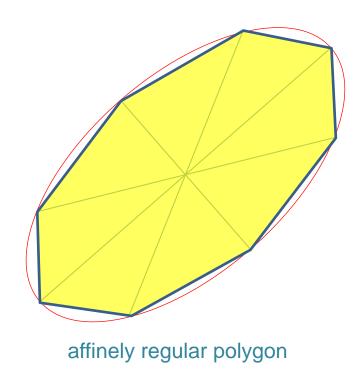
By iterating the midpoint transformation, the limit is an affinely regular polygon...



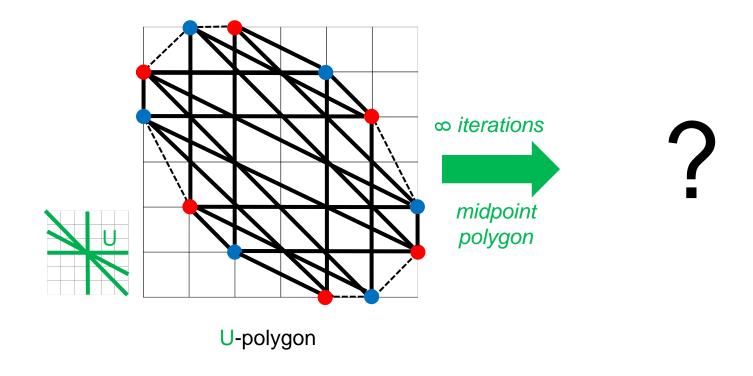
By iterating the midpoint transformation, the limit is an affinely regular polygon...

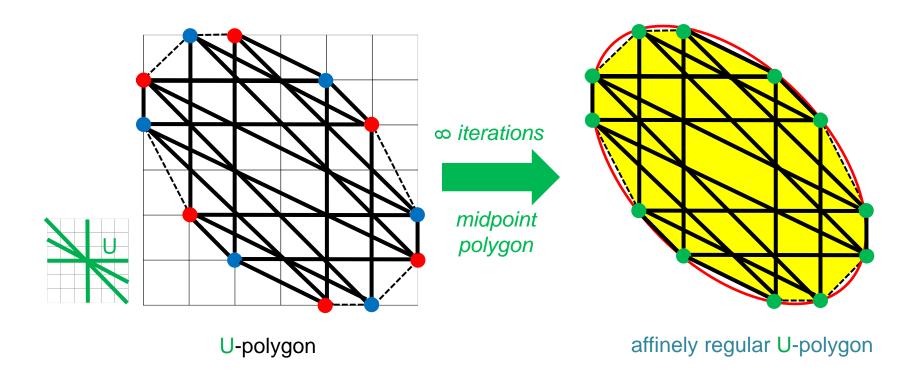


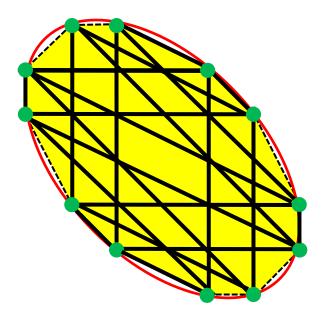
By iterating the midpoint transformation, the limit is an affinely regular polygon...



By iterating the midpoint transformation, the limit is an affinely regular polygon...





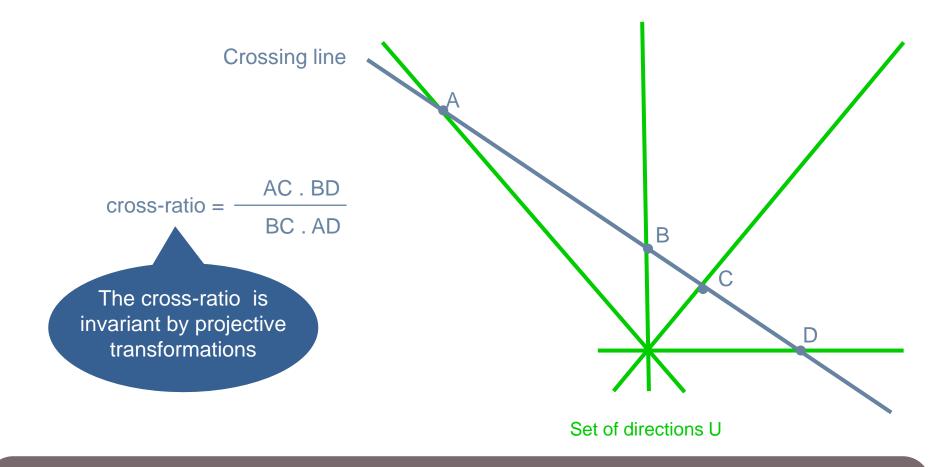


affinely regular U-polygon

Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If U has 4 directions: affinely regular U-polygons exist iff their cross-ratio is in $\{4/3,3/2,2,3/2,2\}$



Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If U has 4 directions: affinely regular U-polygons exist iff their cross-ratio is in $\{4/3,3/2,2,3/4\}$

Non trivial proof with:

Trignometry

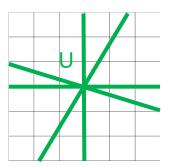
Cyclotomic polynomials

P-adic numbers

Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If U has 4 directions: affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4 }



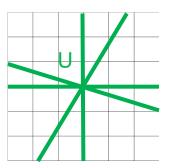
For cross-ratio not in { 4/3 ,3/2 ,2 ,3 ,4 }

No affinely regular U-polygon

Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If U has 4 directions: affinely regular U-polygons exist iff their cross-ratio is in $\{4/3,3/2,2,3,4\}$



For cross-ratio not in { 4/3 ,3/2 ,2 ,3 ,4 }

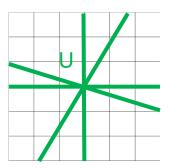
No affinely regular U-polygon

No U-polygon

Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If U has 4 directions: affinely regular U-polygons exist iff their cross-ratio is in $\{4/3,3/2,2,3,4\}$



For cross-ratio not in { 4/3 ,3/2 ,2 ,3 ,4 }

No affinely regular U-polygon

No U-polygon

Convex lattice sets are uniquely determined by their X-rays in direction U

Theorem (Gardner Gritzmann1997):

If *U* has 2 or 3 directions : affinely regular *U*-polygons always exist

If *U* has 4 directions: affinely regular *U*-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4 }

Theorem (Gardner Gritzmann1997 + Brunetti Daurat 2003):
For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.

Theorem (Gardner Gritzmann1997 + Brunetti Daurat 2003):

For some directions, convex lattice sets

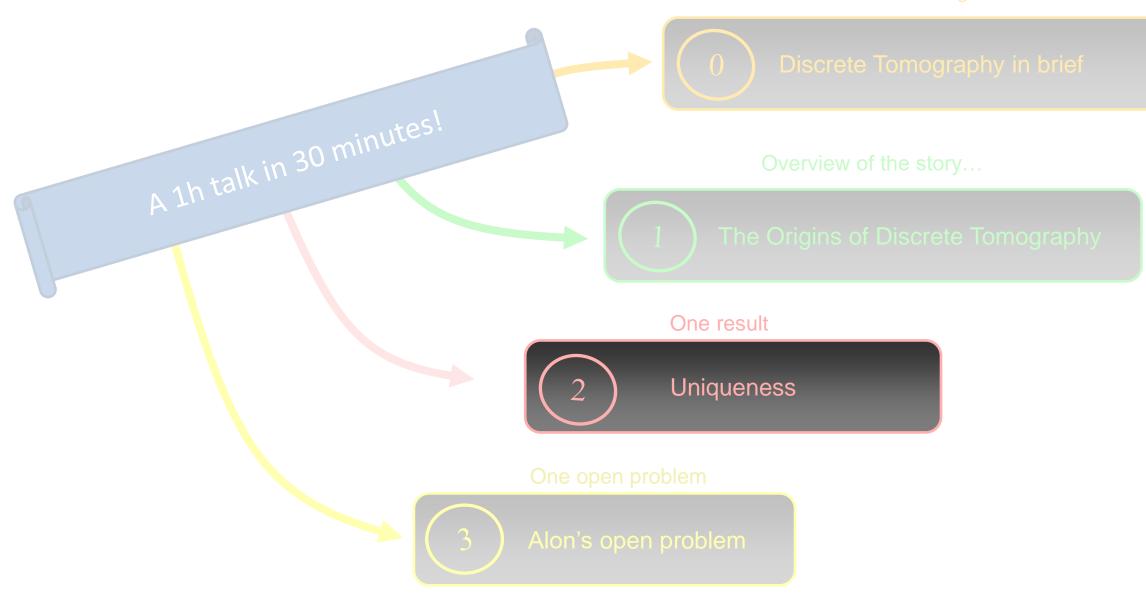
are uniquely determined by their X-rays

and can be reconstructed in polynomial time.

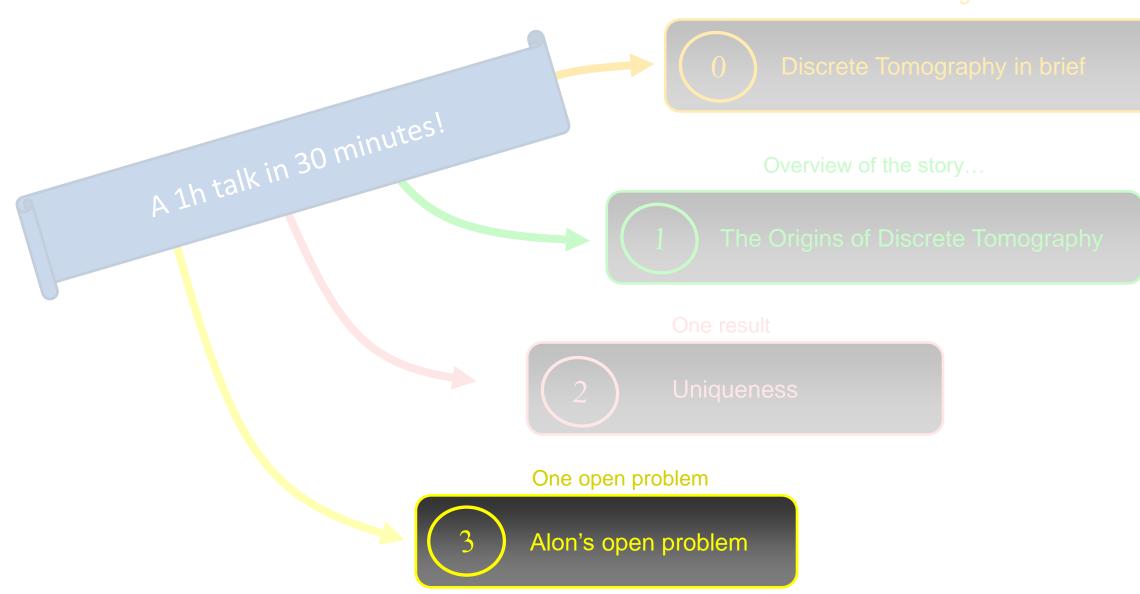
Theorem (Barcucci-Del Lungo-Nivat-Pinzani 1996):

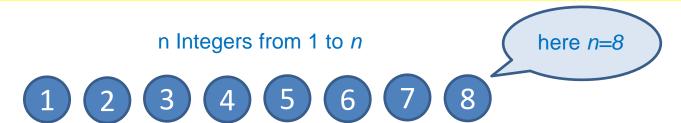
HV convex polyominoes can be reconstructed from their horizontal and vertical X-rays in polynomial time.

What are we talking about?

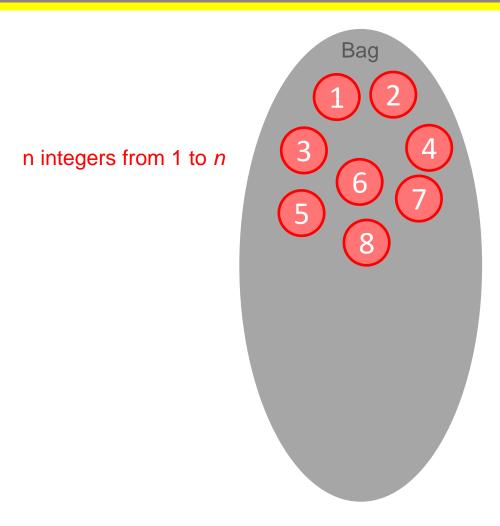


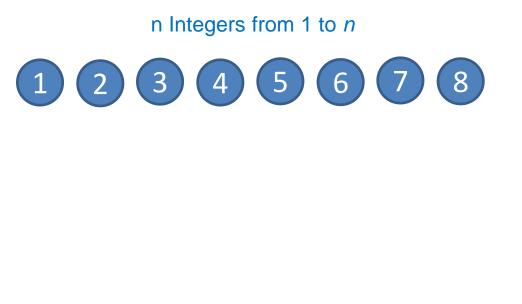
What are we talking about '

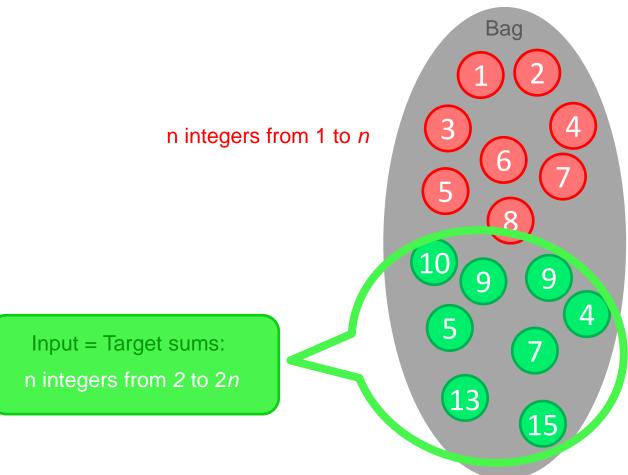


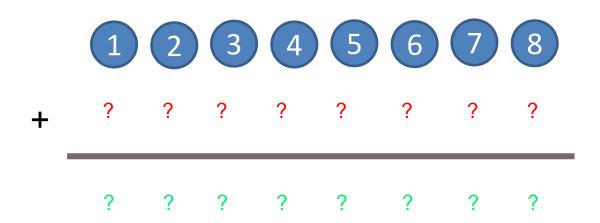


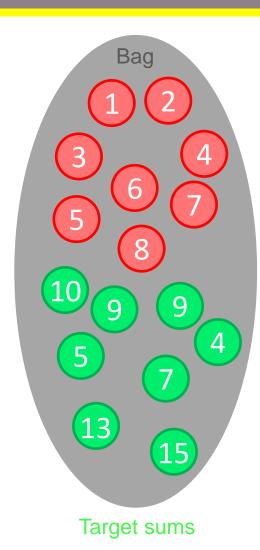
n Integers from 1 to *n*

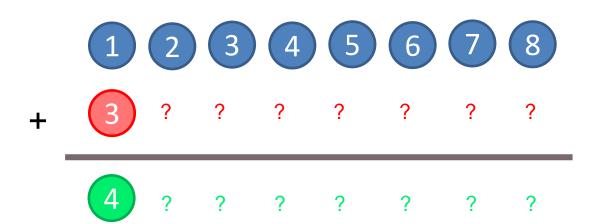


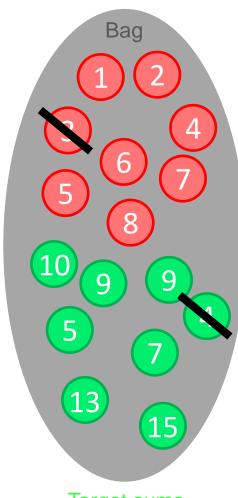




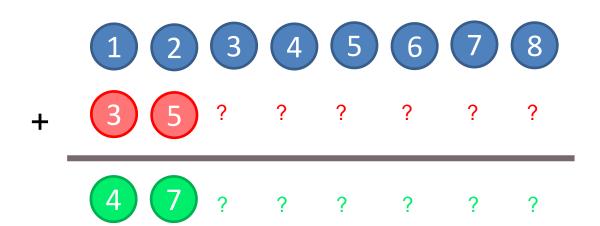


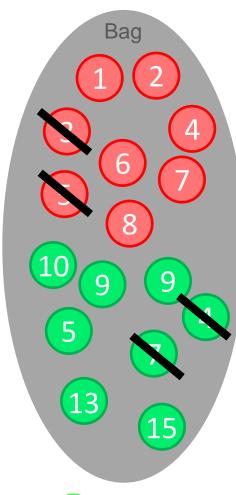




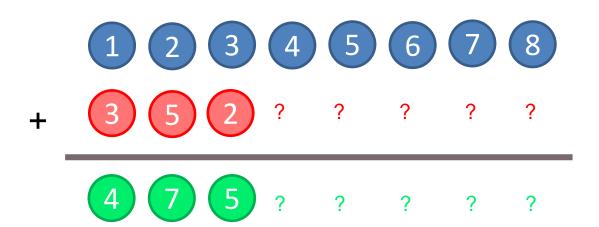


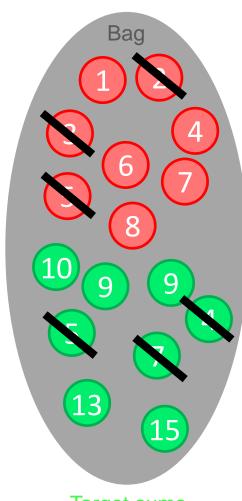
Target sums



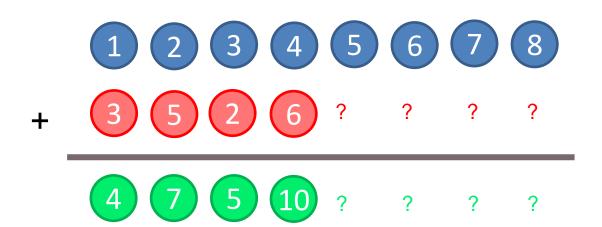


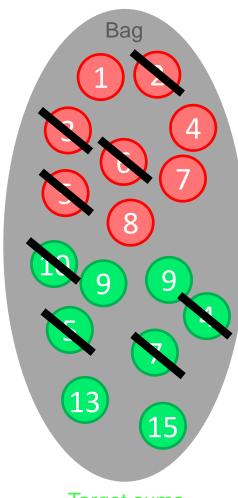
Target sums



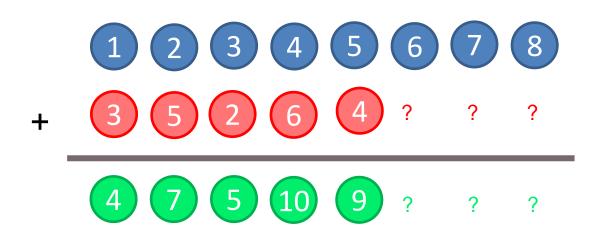


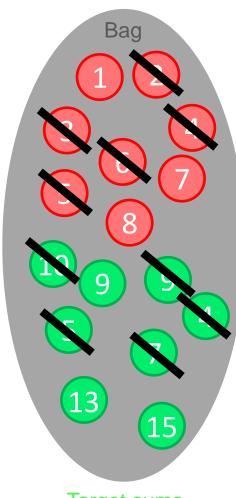
Target sums



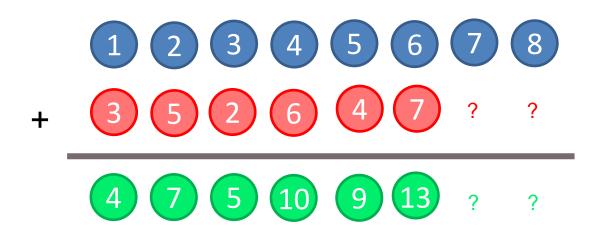


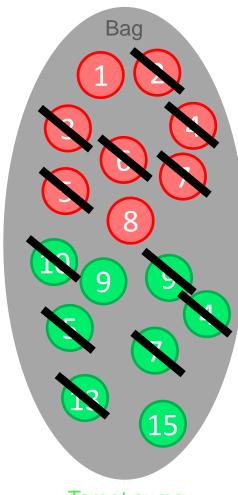
Target sums



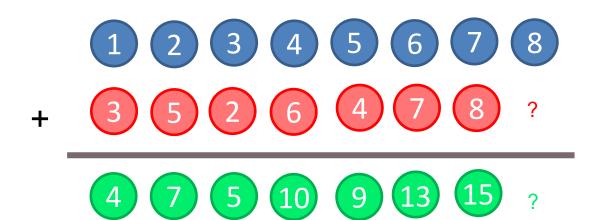


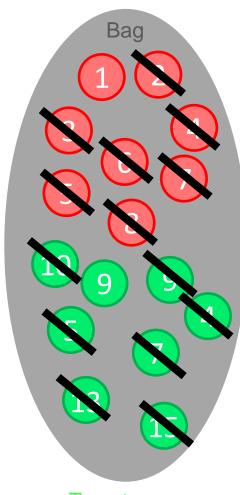
Target sums



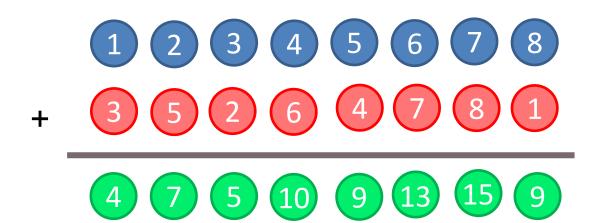


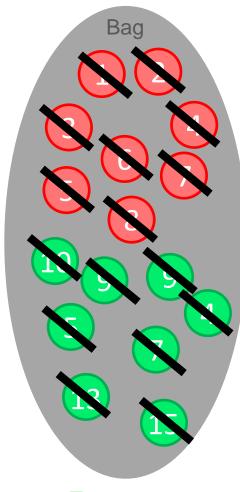
Target sums



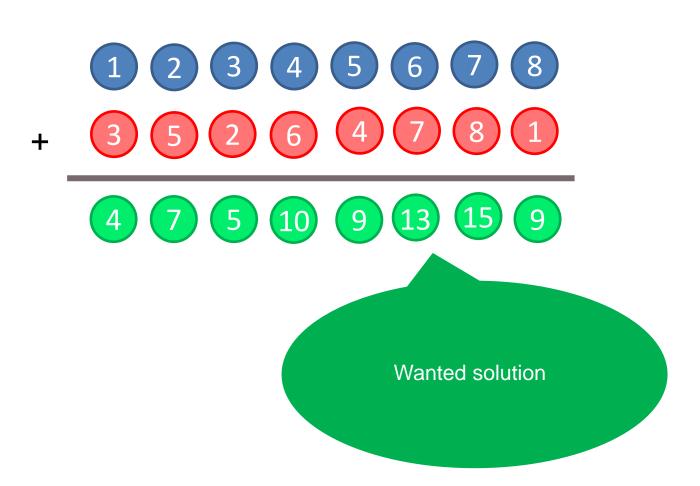


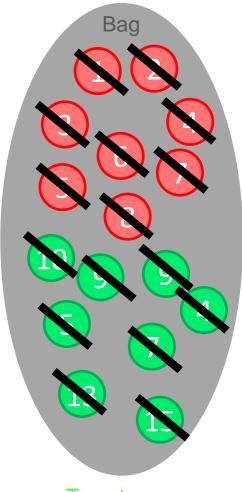
Target sums



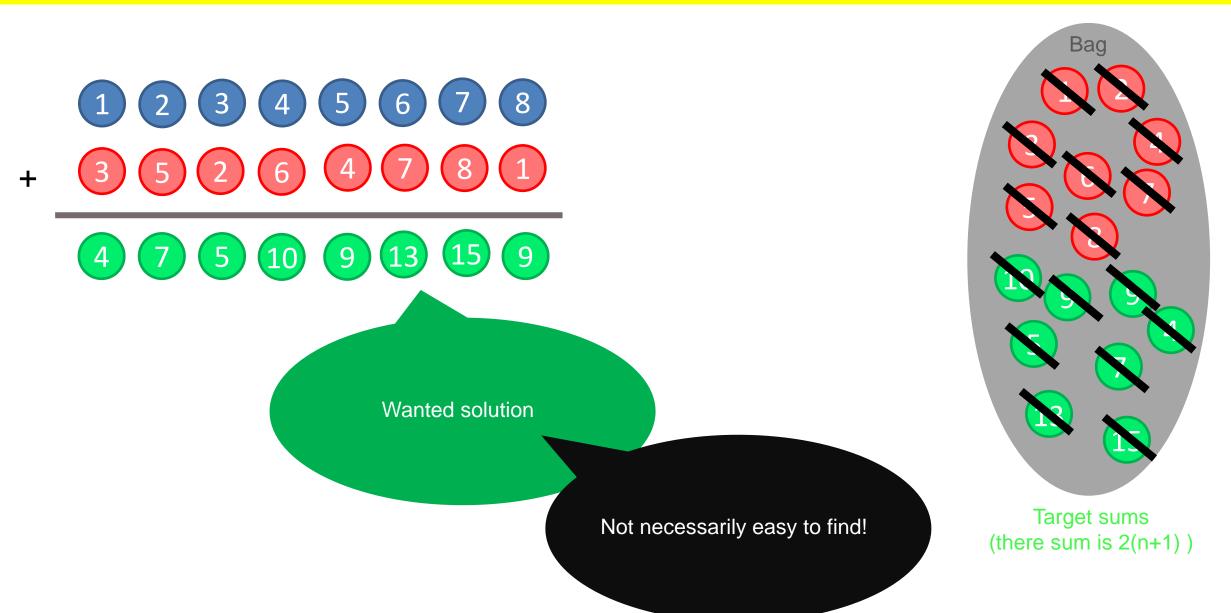


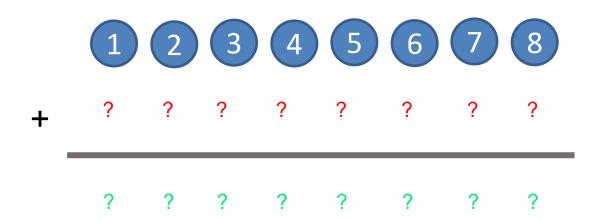
Target sums (there sum is 2(n+1))

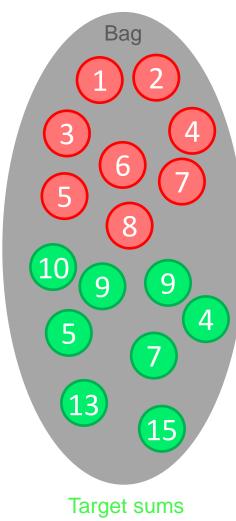




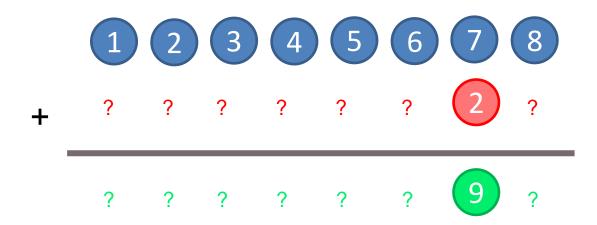
Target sums (there sum is 2(n+1))

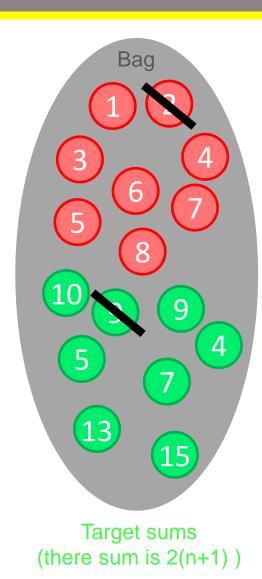


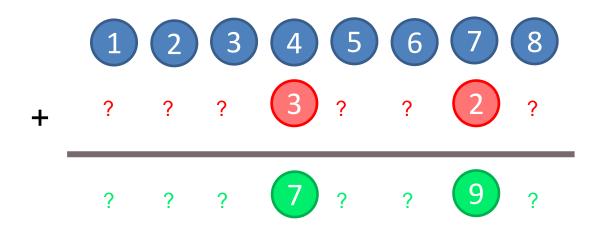


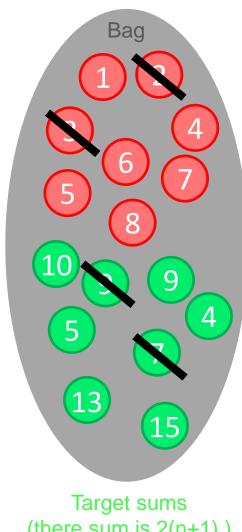


Target sums (there sum is 2(n+1))

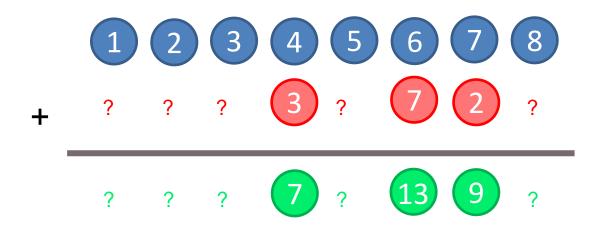


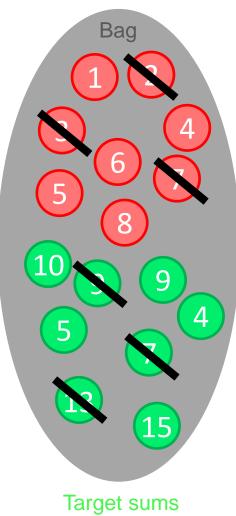




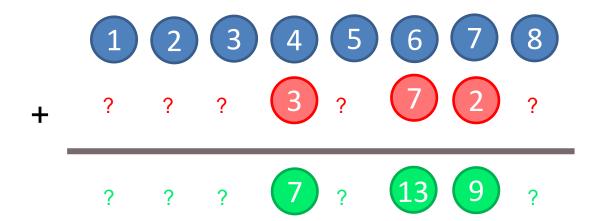


(there sum is 2(n+1))

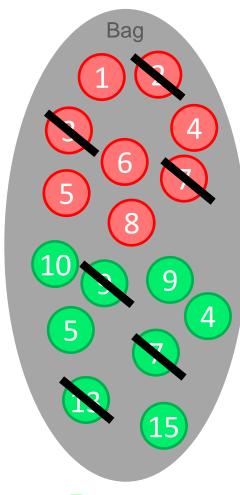




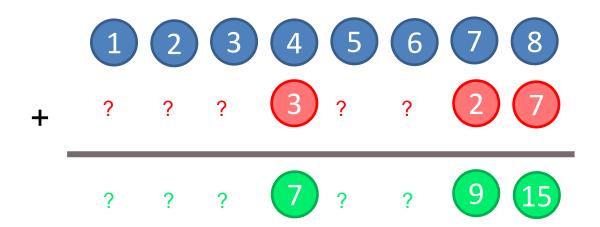
Target sums (there sum is 2(n+1))

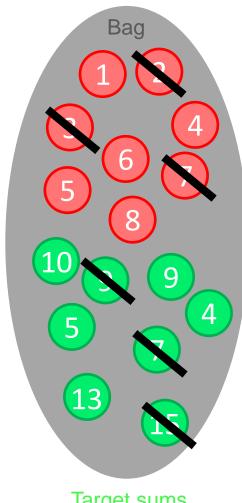


No more able to do (15)

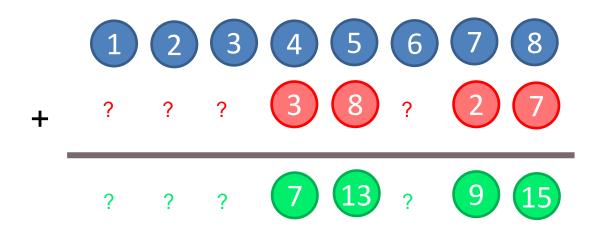


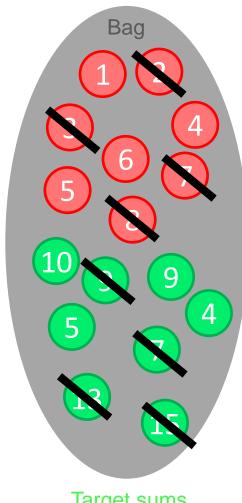
Target sums (there sum is 2(n+1))



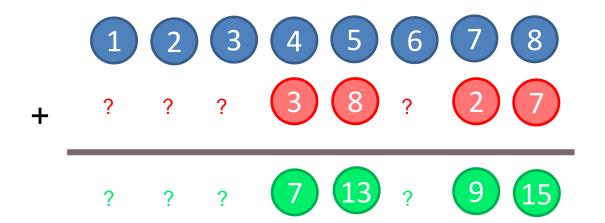


Target sums (there sum is 2(n+1))



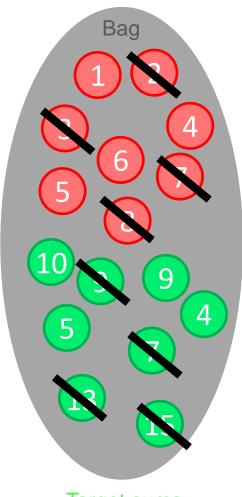


Target sums (there sum is 2(n+1))

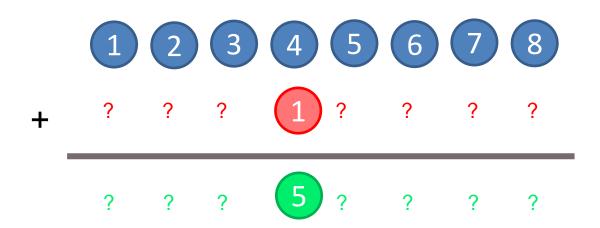


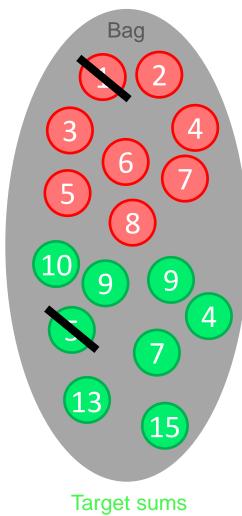
No more able to use

5

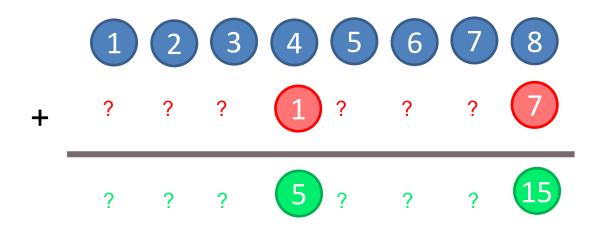


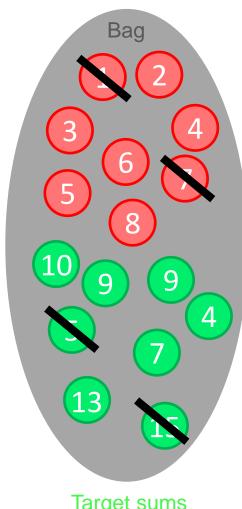
Target sums (there sum is 2(n+1))



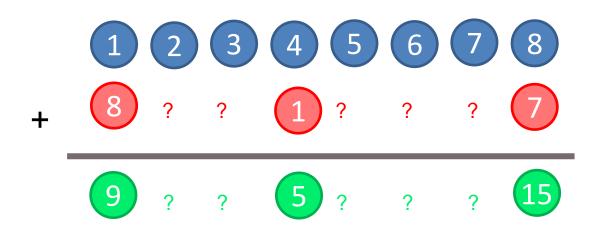


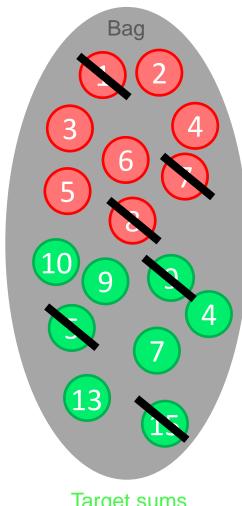
Target sums (there sum is 2(n+1))



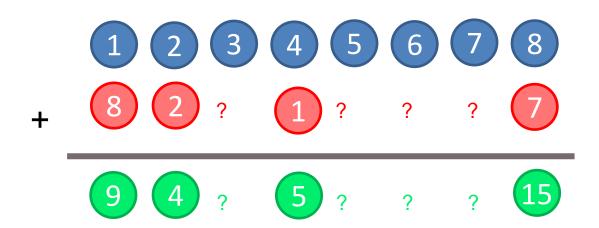


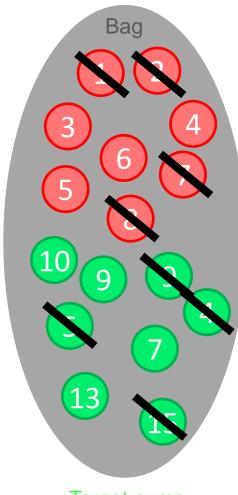
Target sums (there sum is 2(n+1))



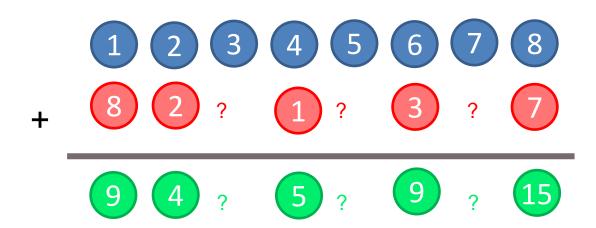


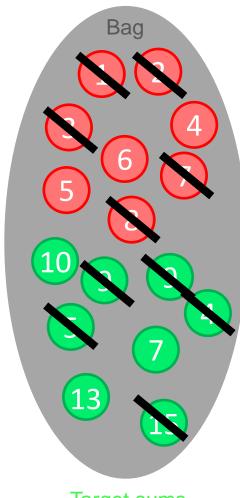
Target sums (there sum is 2(n+1))



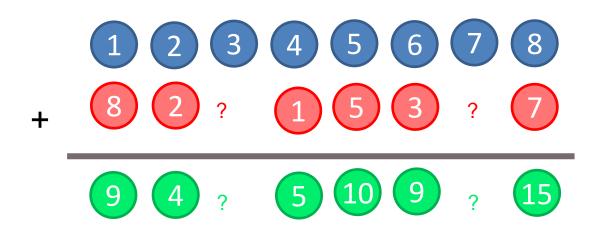


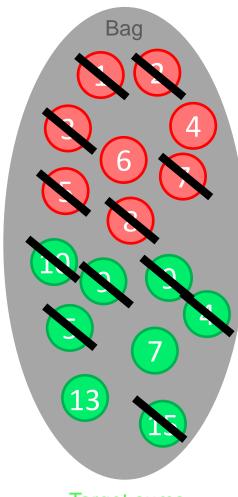
Target sums (there sum is 2(n+1))



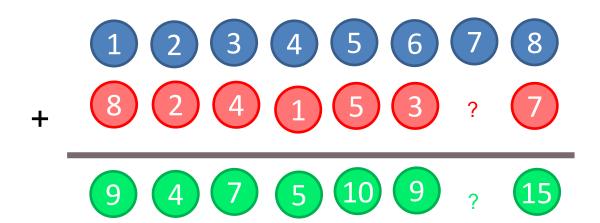


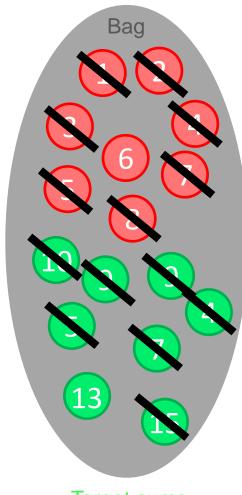
Target sums (there sum is 2(n+1))



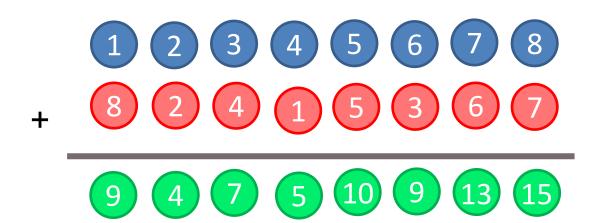


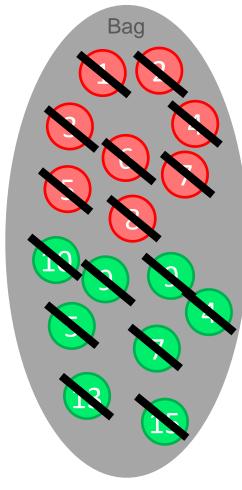
Target sums (there sum is 2(n+1))



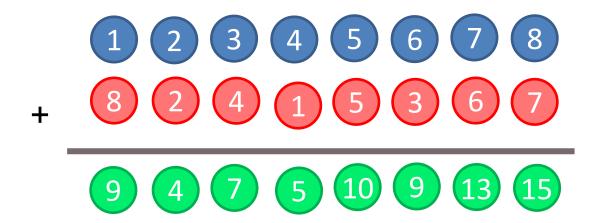


Target sums (there sum is 2(n+1))

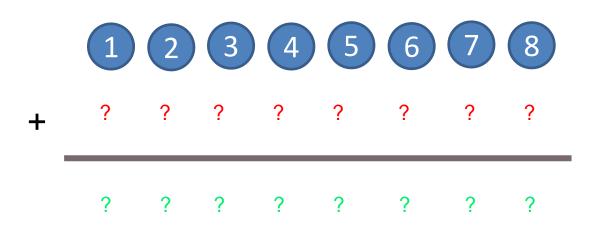




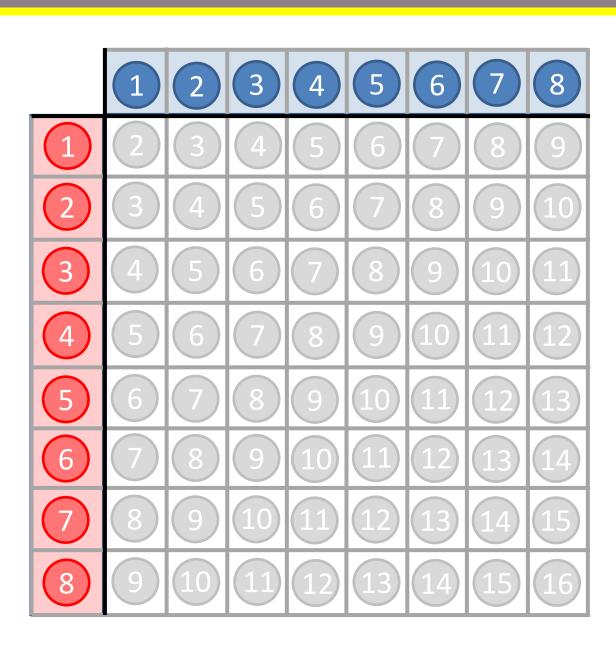
Target sums (there sum is 2(n+1))

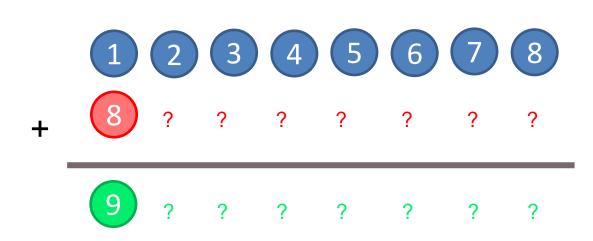


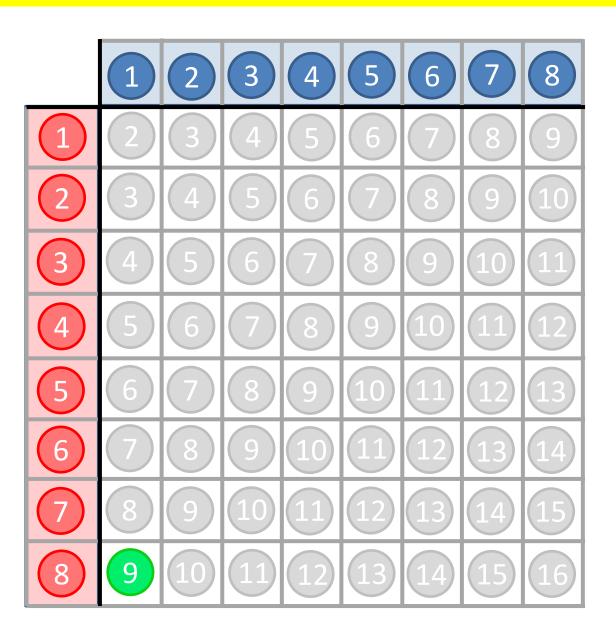
Relation to Discrete Tomography ?

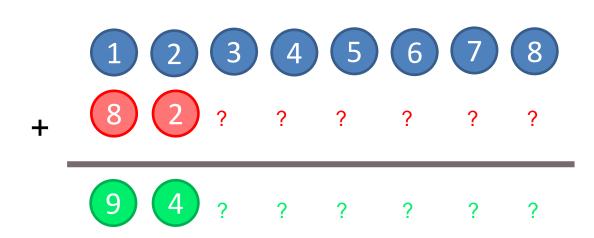


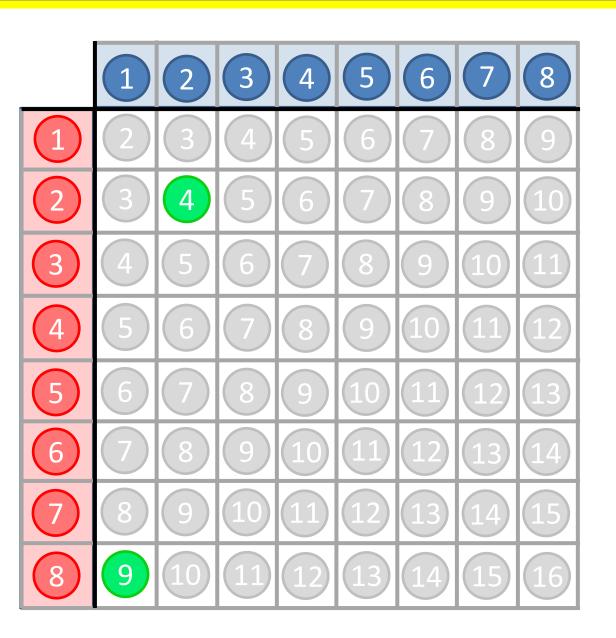
Relation to Discrete Tomography ?

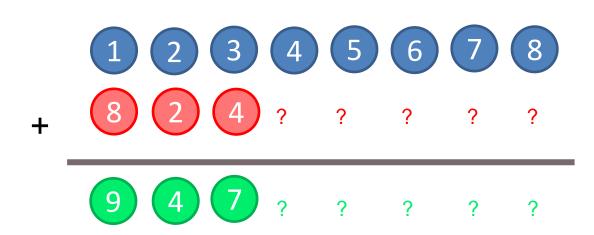


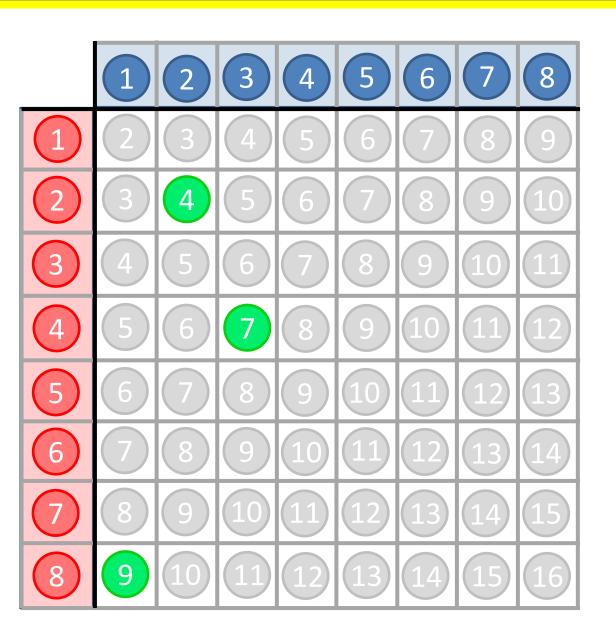


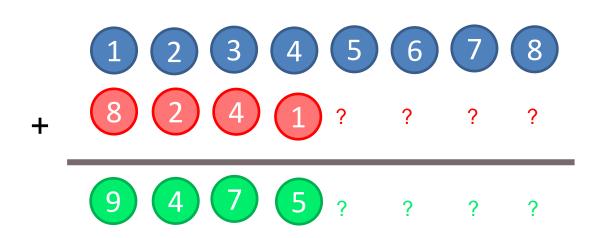


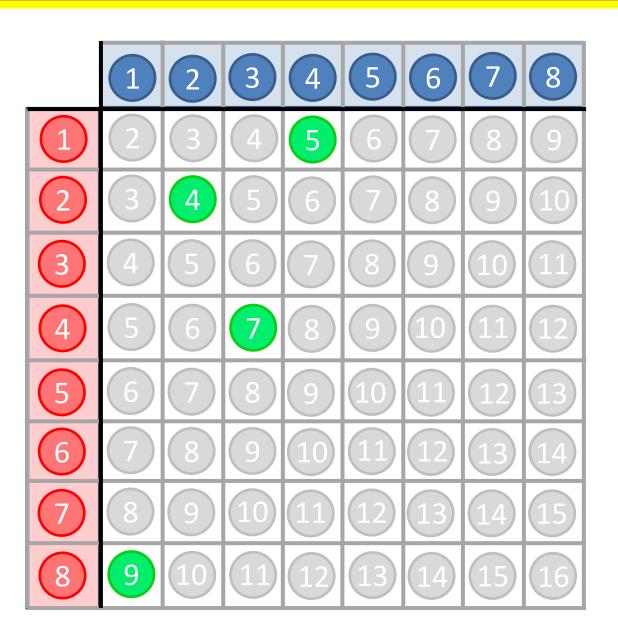


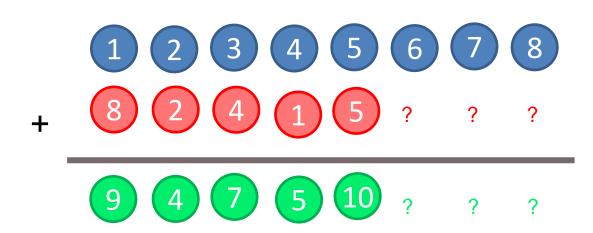


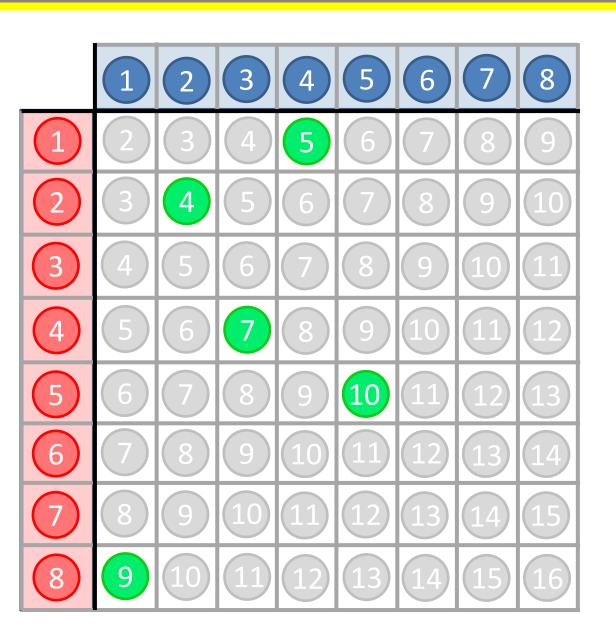


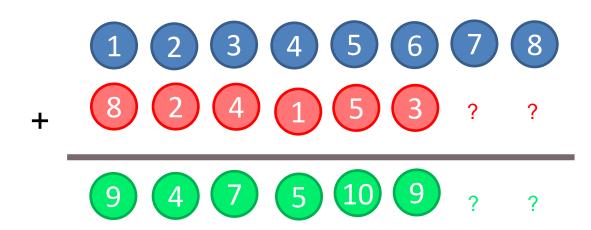


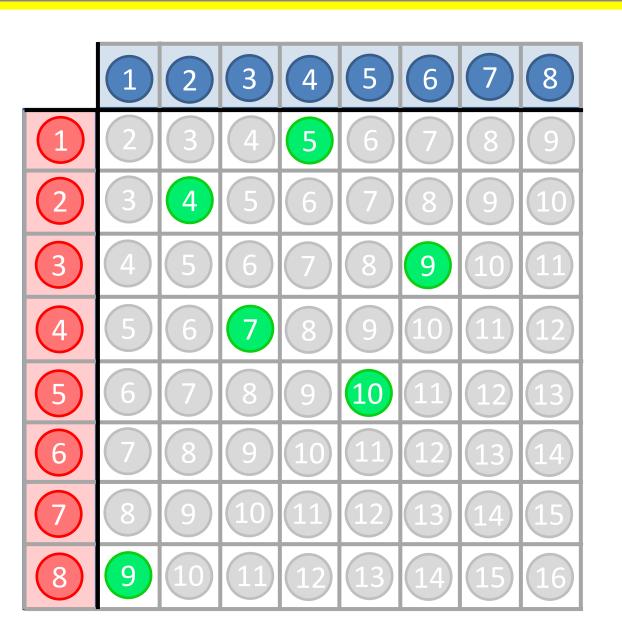


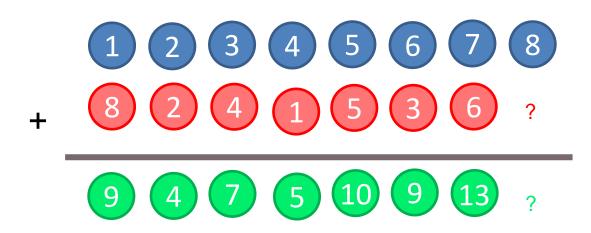


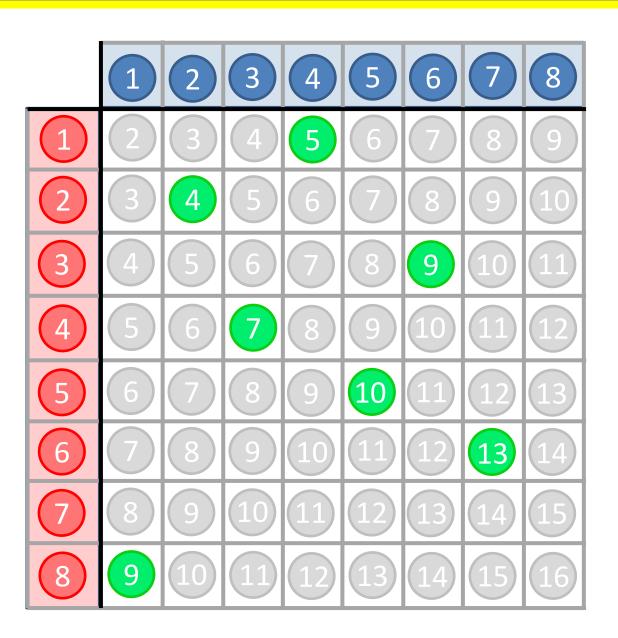


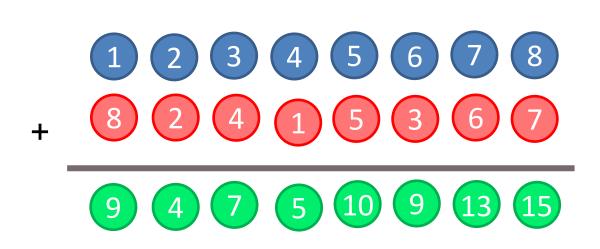


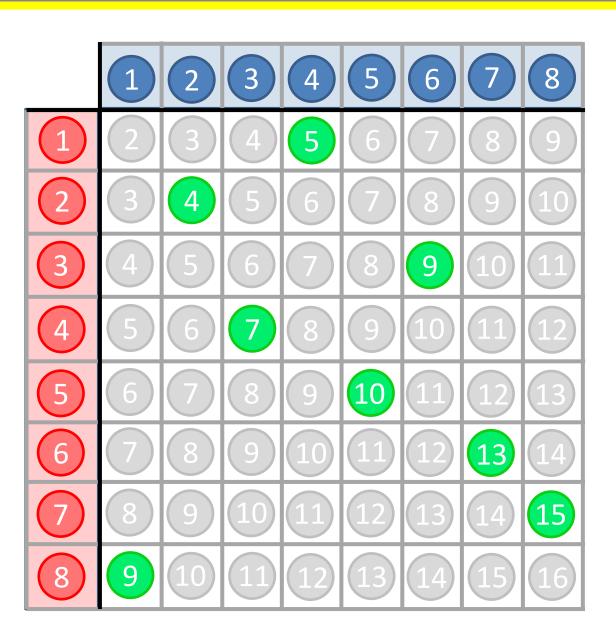


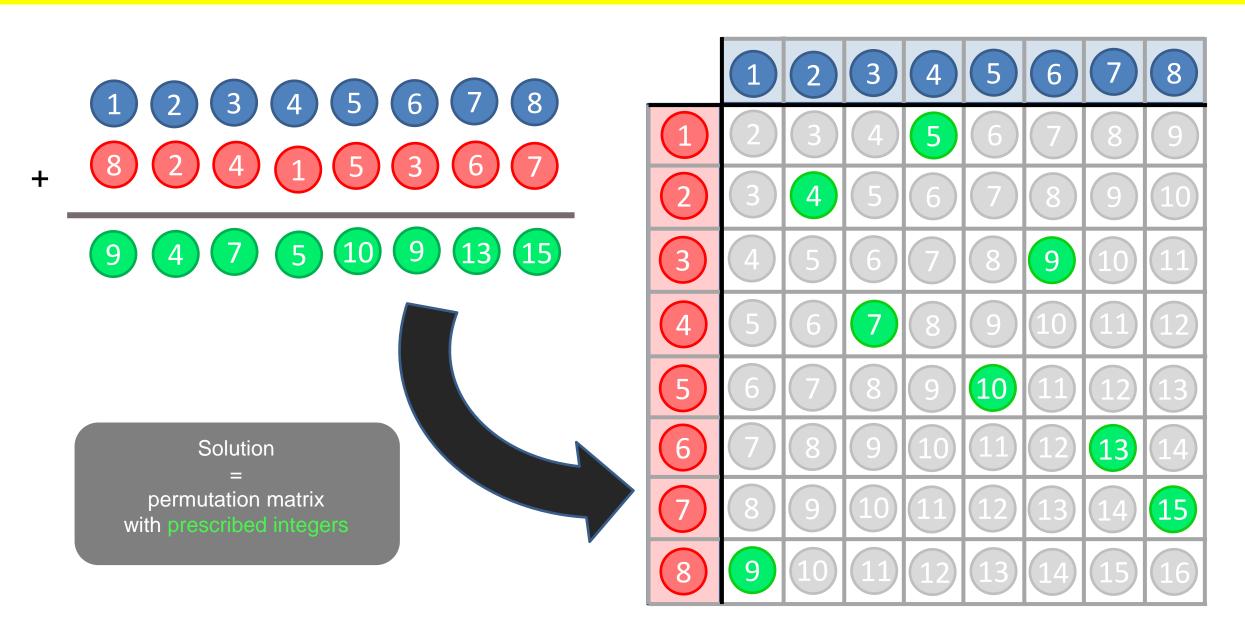






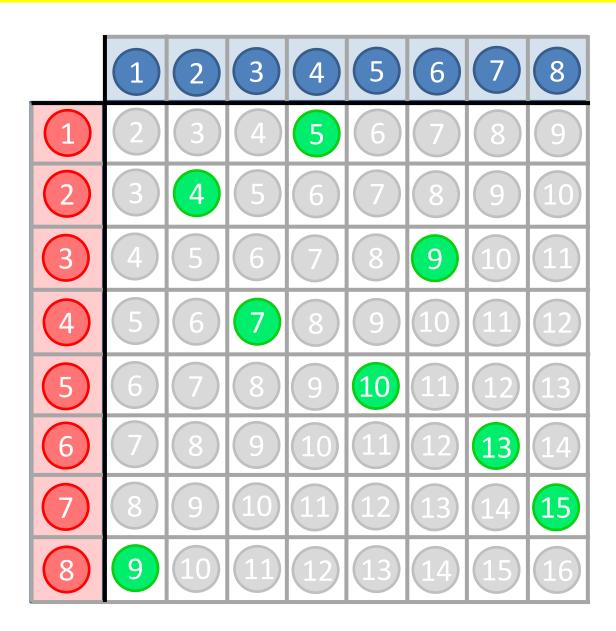






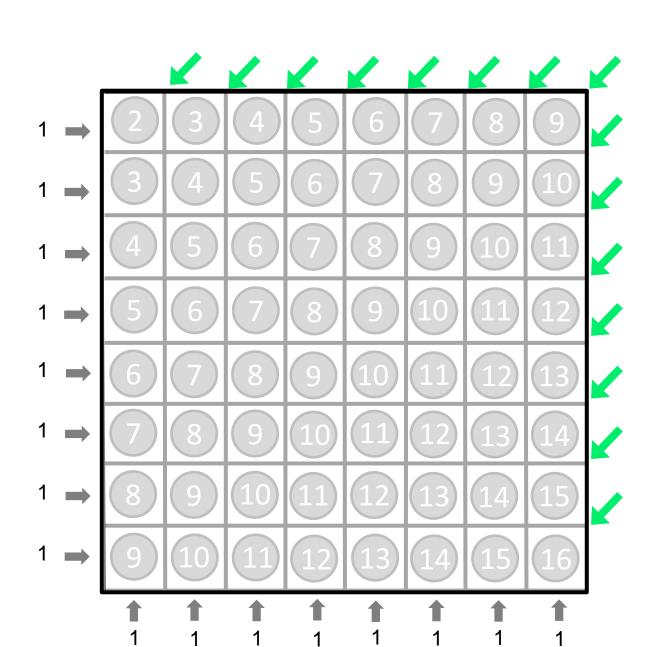
Solution =

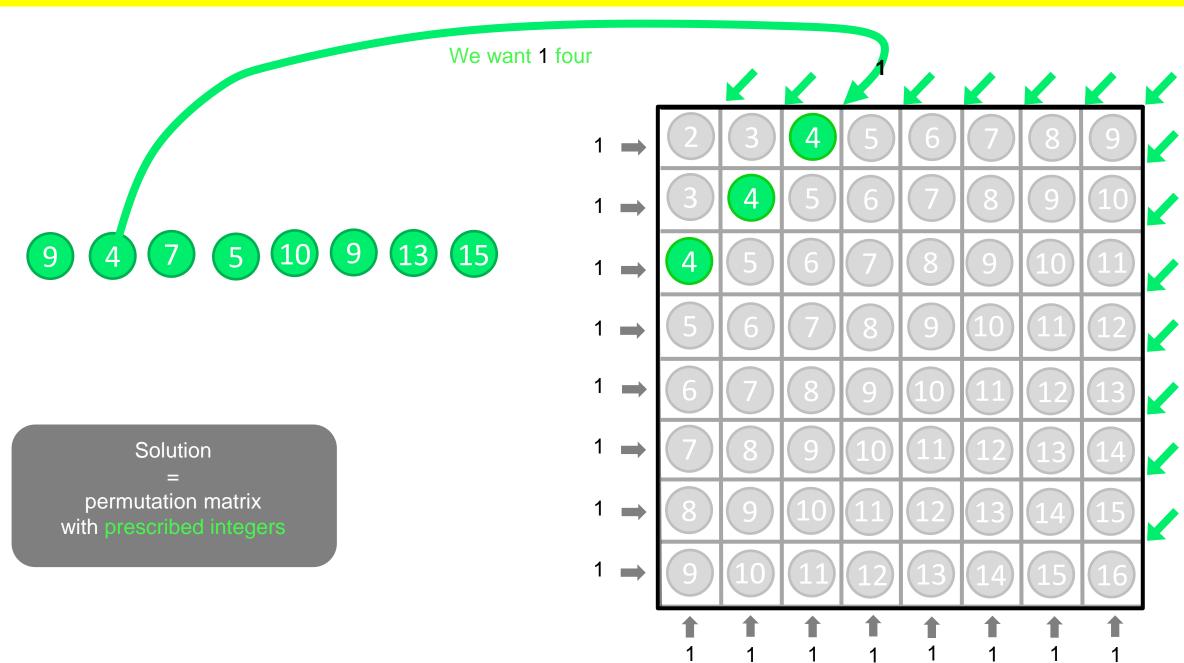
permutation matrix with prescribed integers

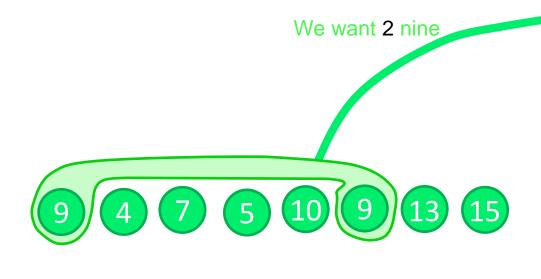


Solution =

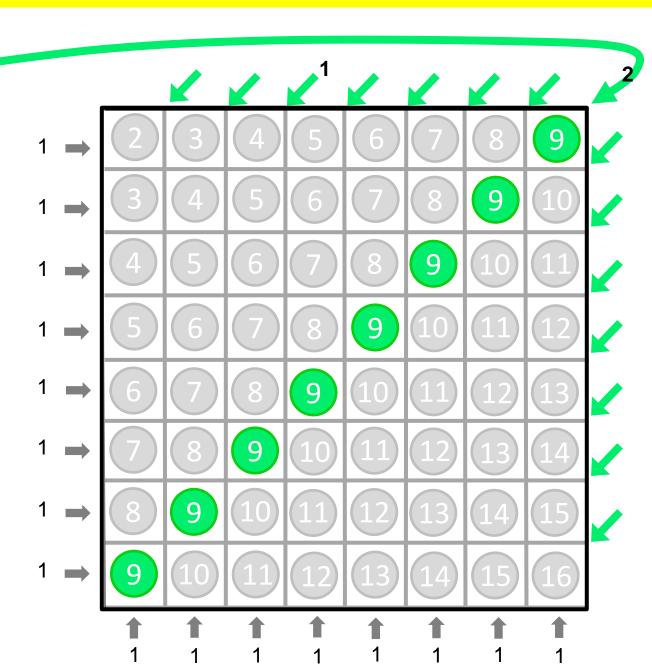
permutation matrix with prescribed integers

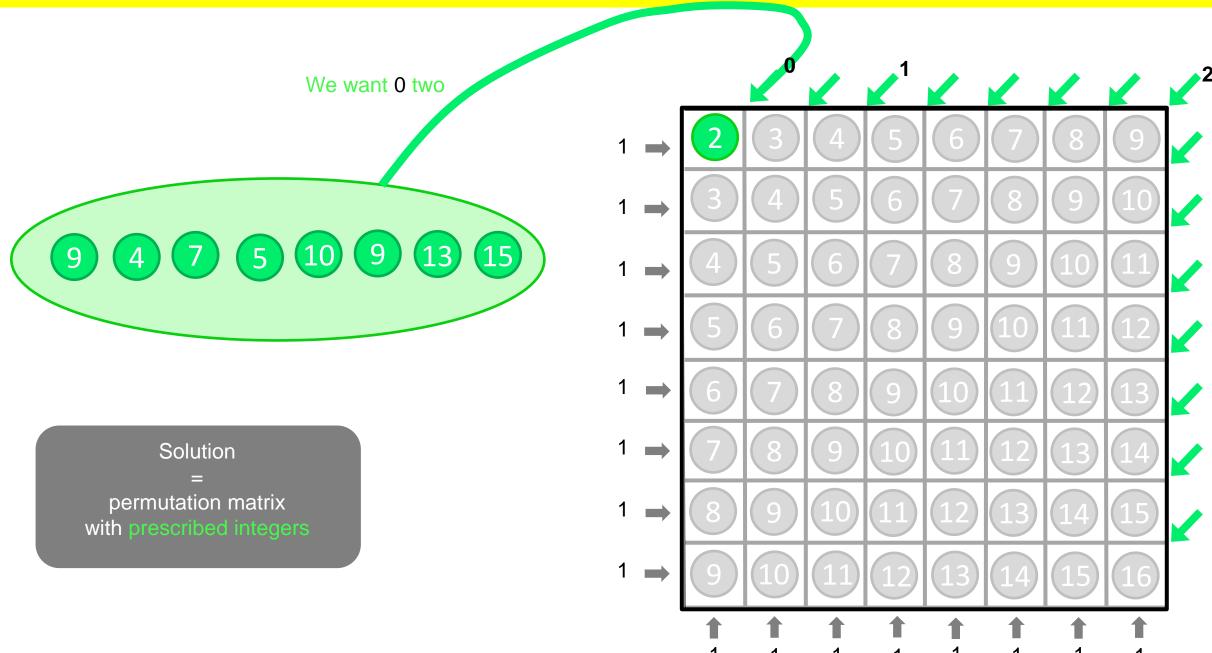






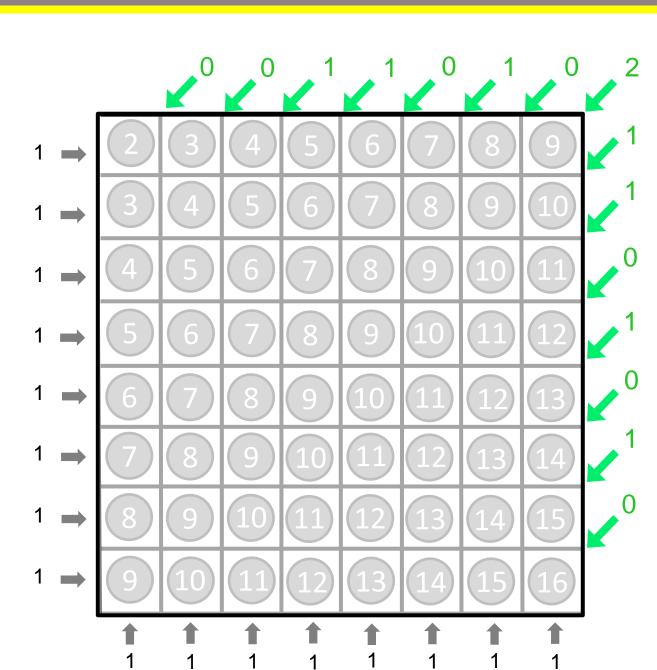
Solution
=
permutation matrix
with prescribed integers





Obtaining the target sums

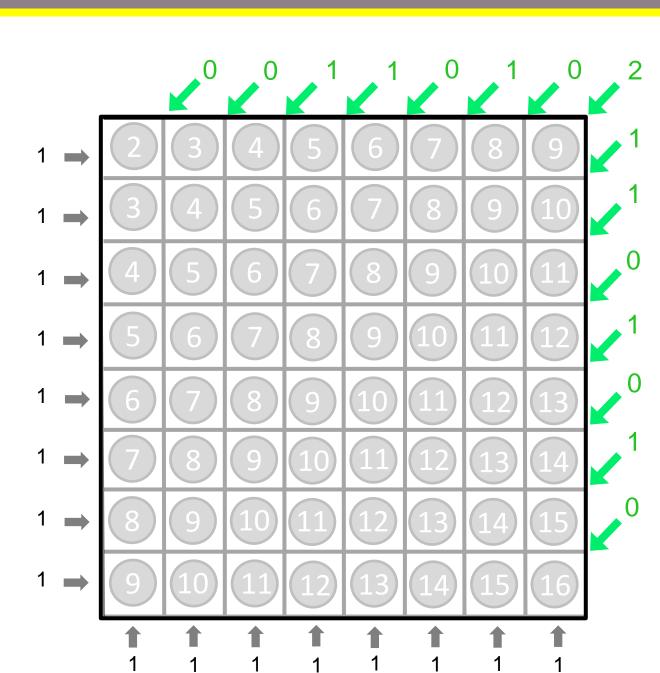
is a Discrete Tomography puzzle

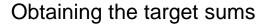


Obtaining the target sums

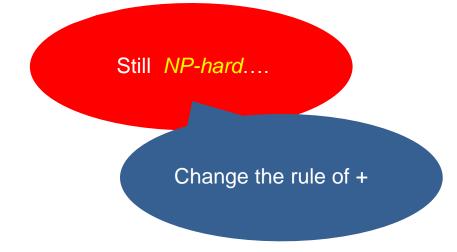
is a Discrete Tomography puzzle

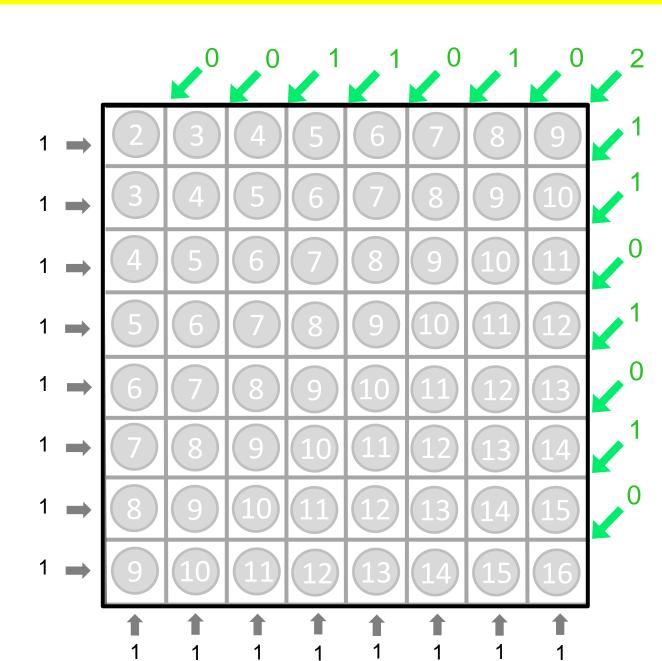
Still *NP-hard*....

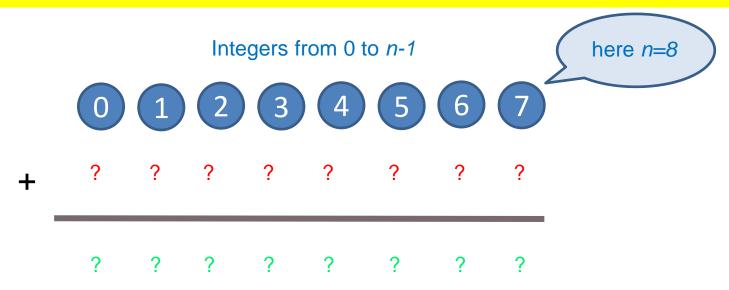




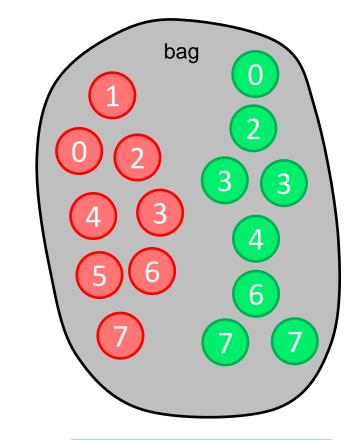
is a Discrete Tomography puzzle



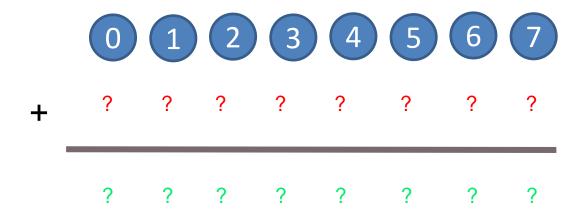


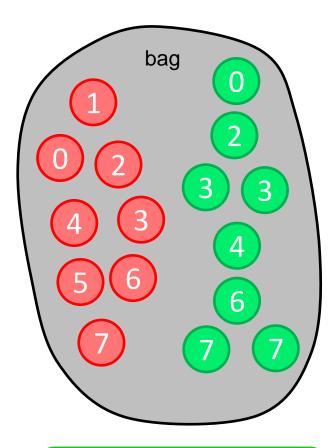


Integers from 0 to *n-1*

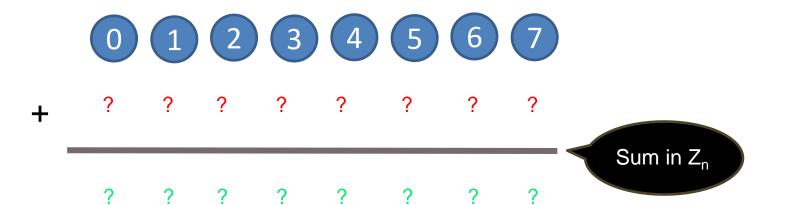


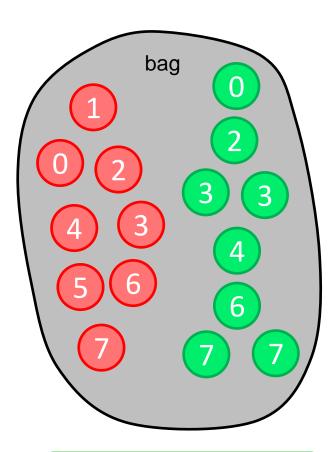
Input = Target sums: n integers with sum 2(n-1)



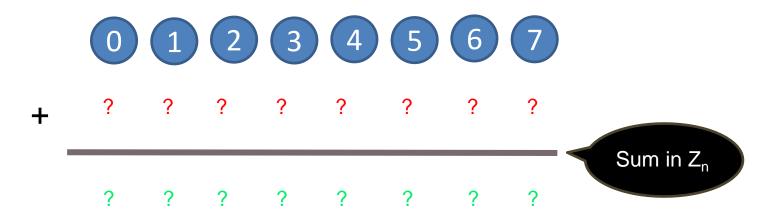


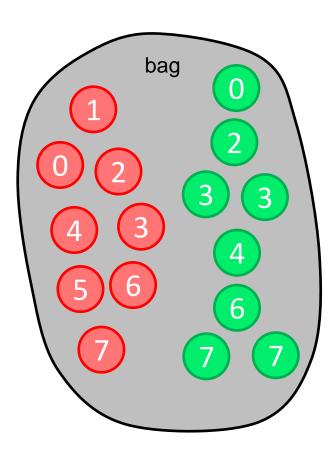
Input = Target sums: n integers with sum 2(n-1)





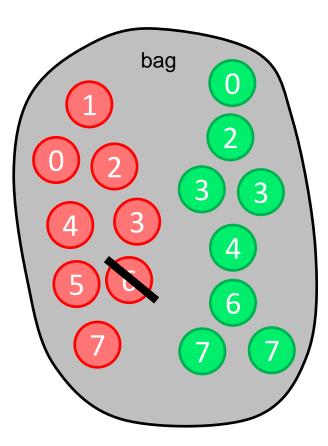
Input = Target sums: n integers with a null sum

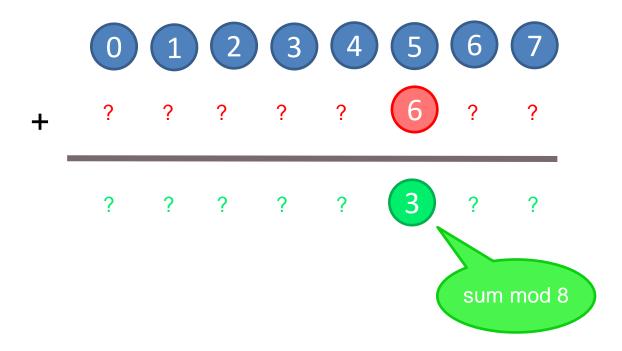


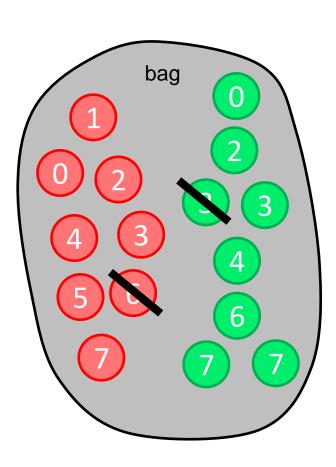


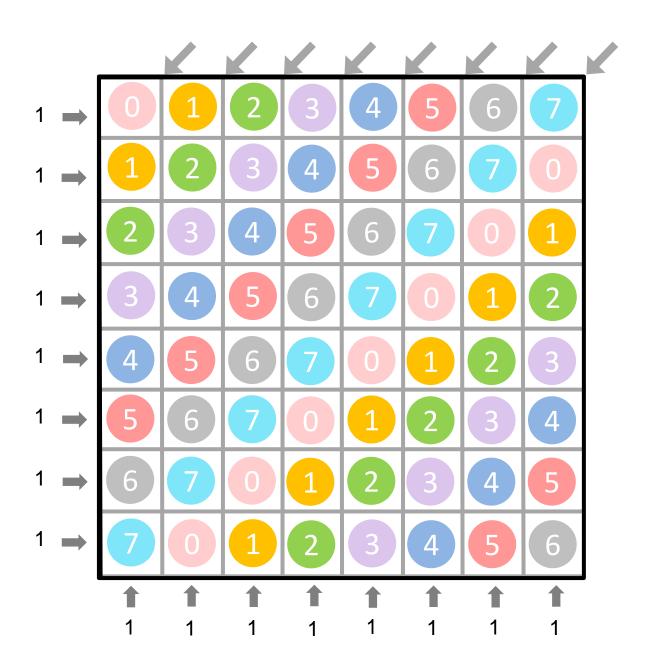
Integers from 0 to *n-1*

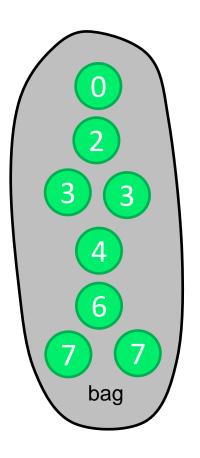
? ? ? ? ? ?

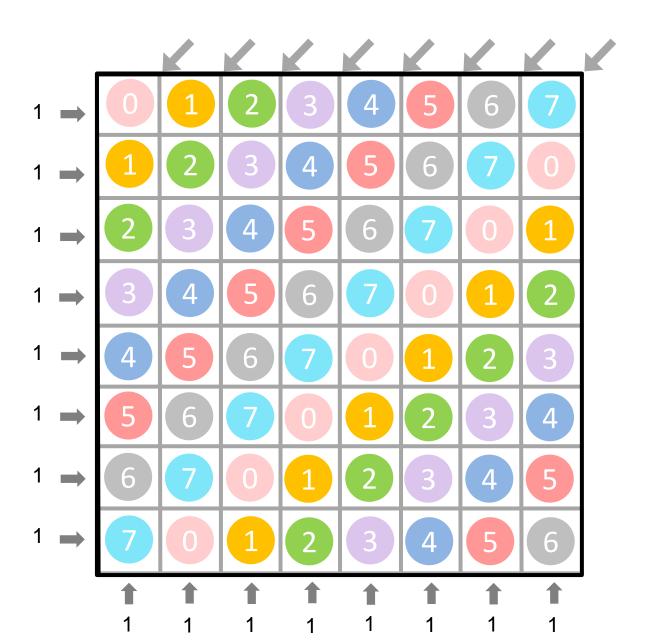


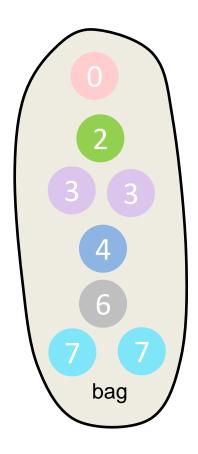


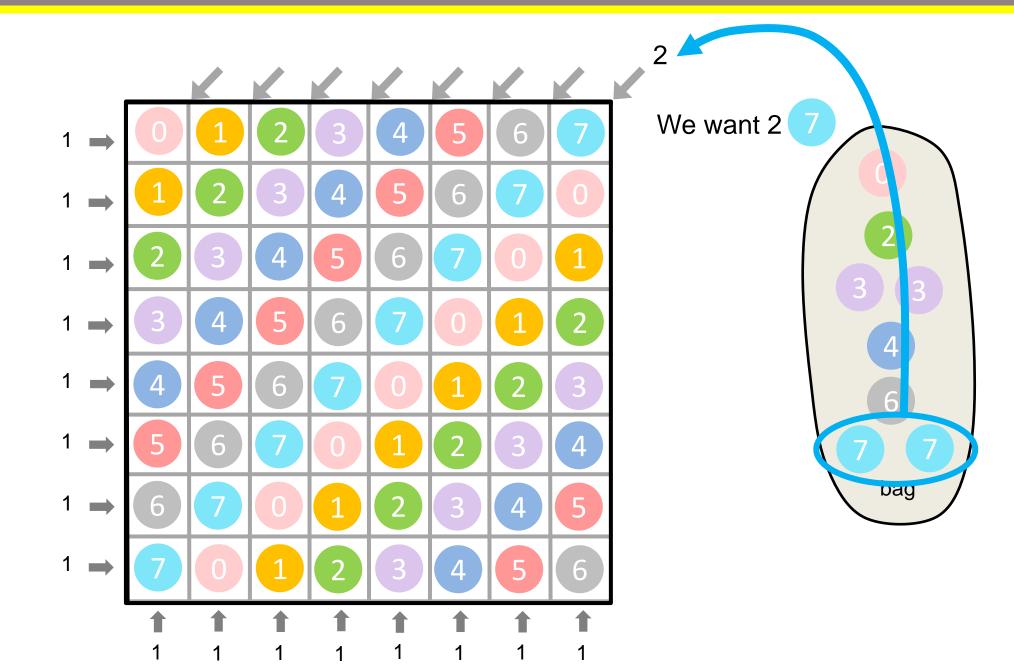


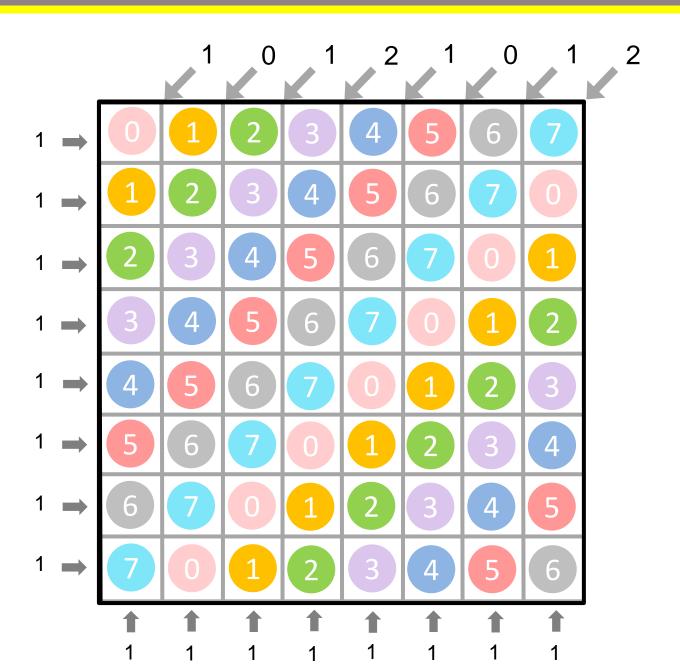


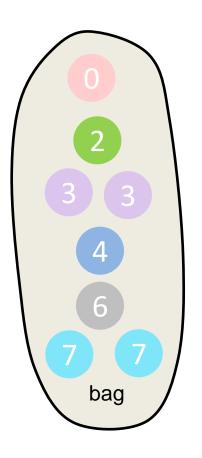


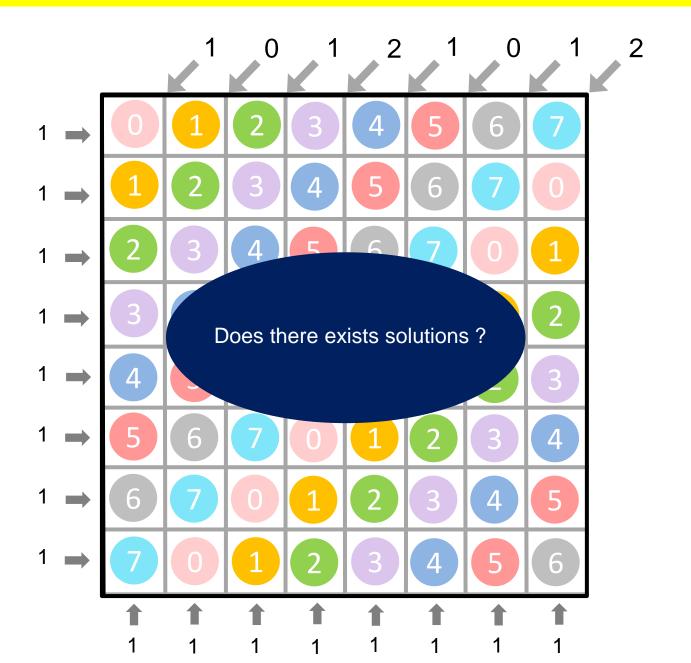


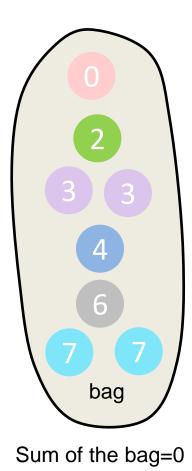


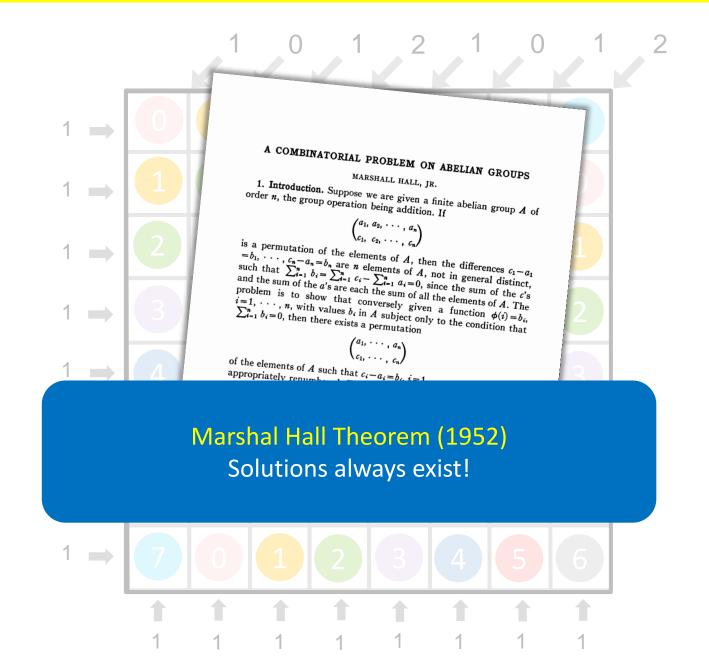


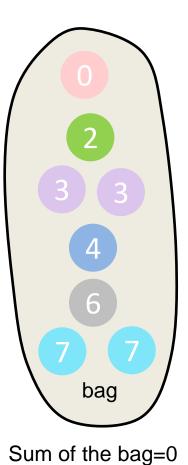




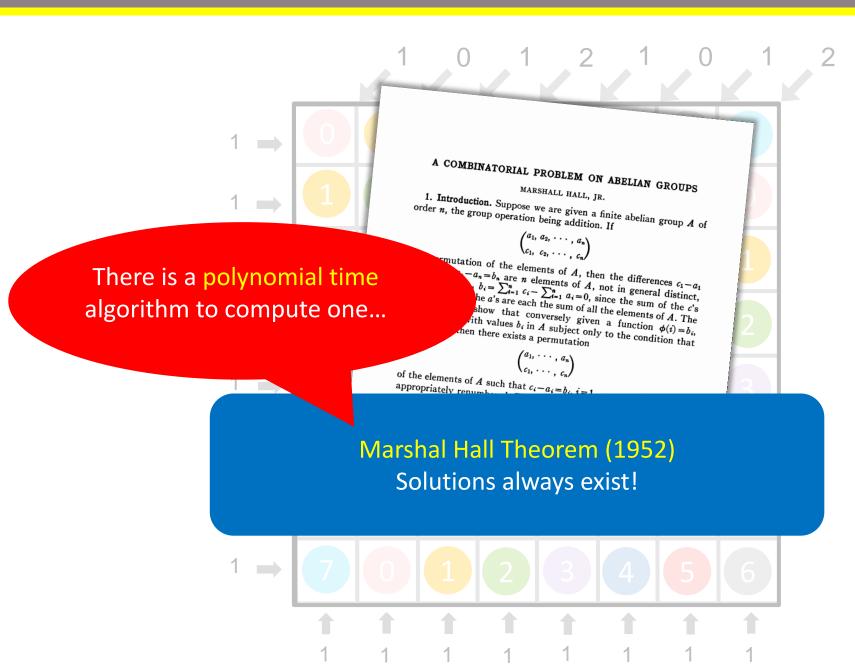


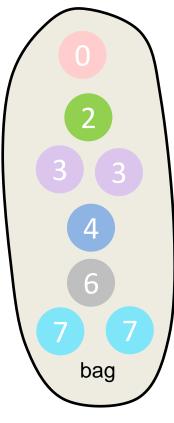




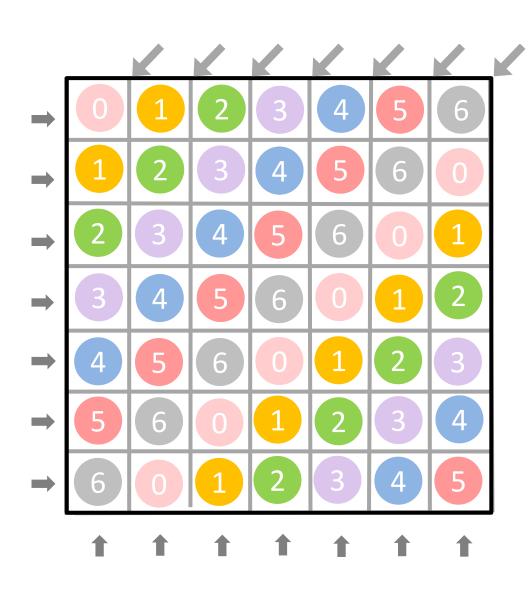


Alon's Combinatorial Open Problem

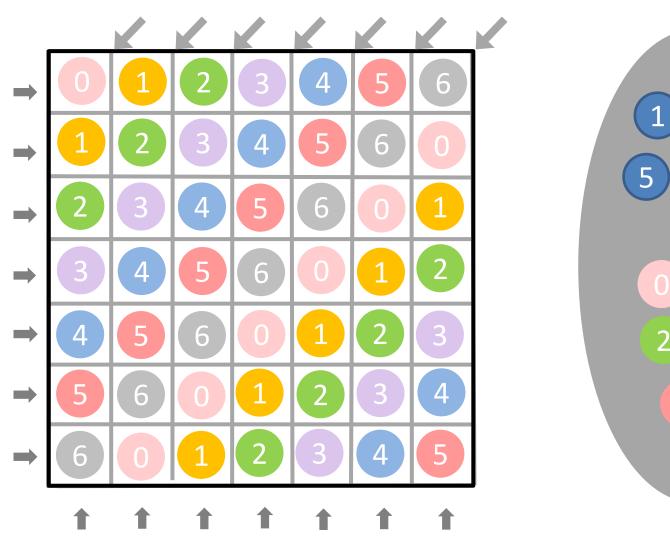


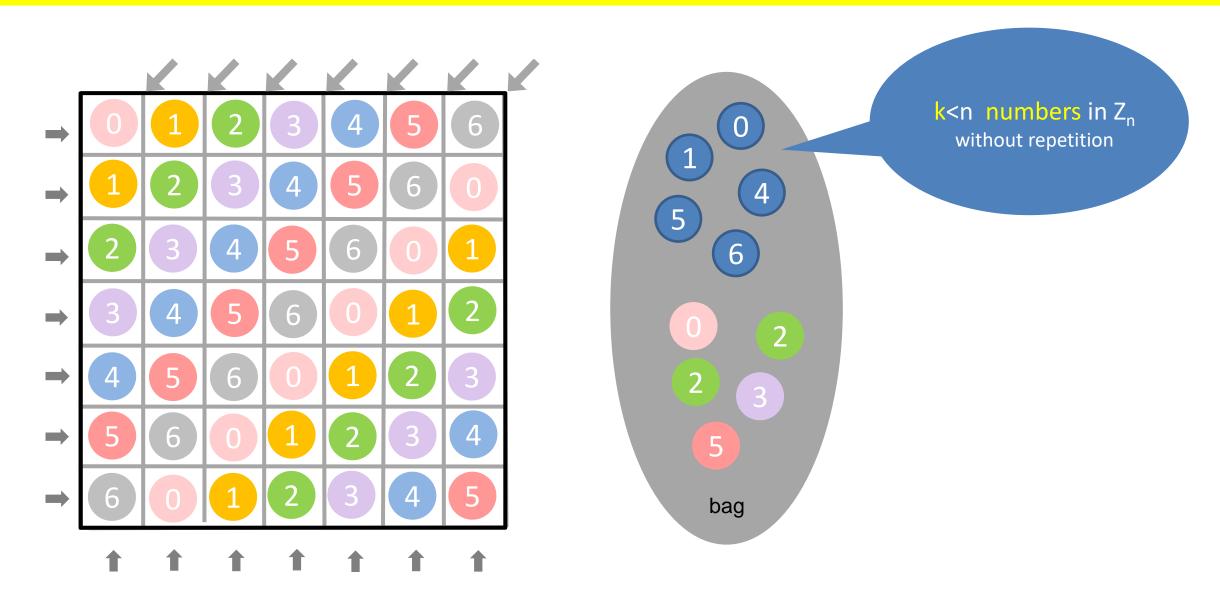


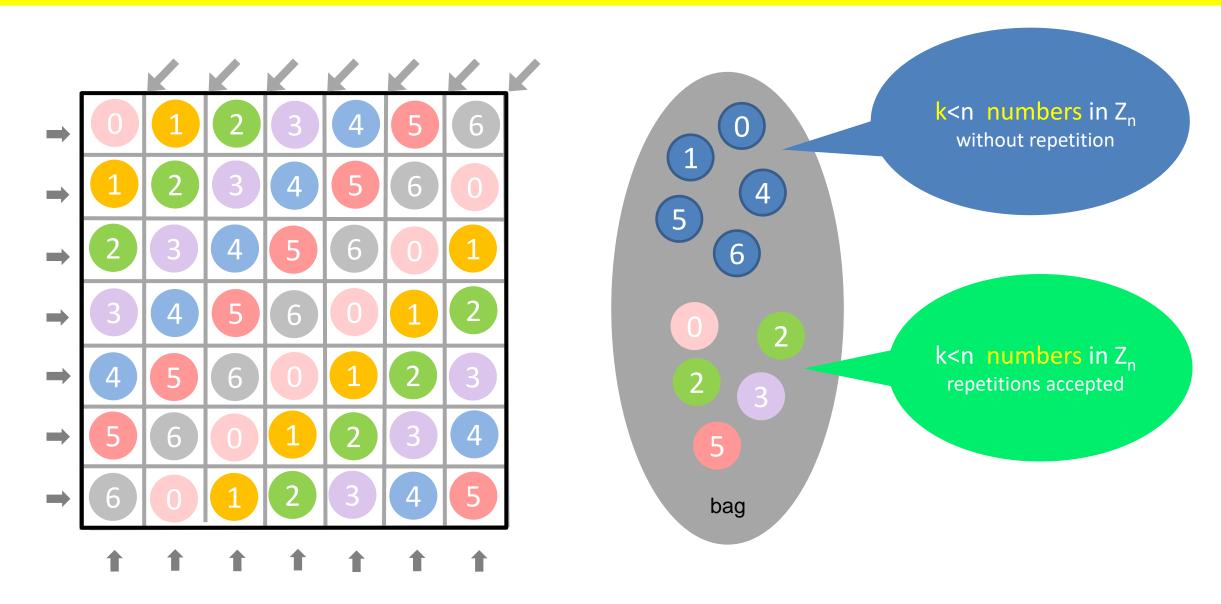
Sum of the bag=0

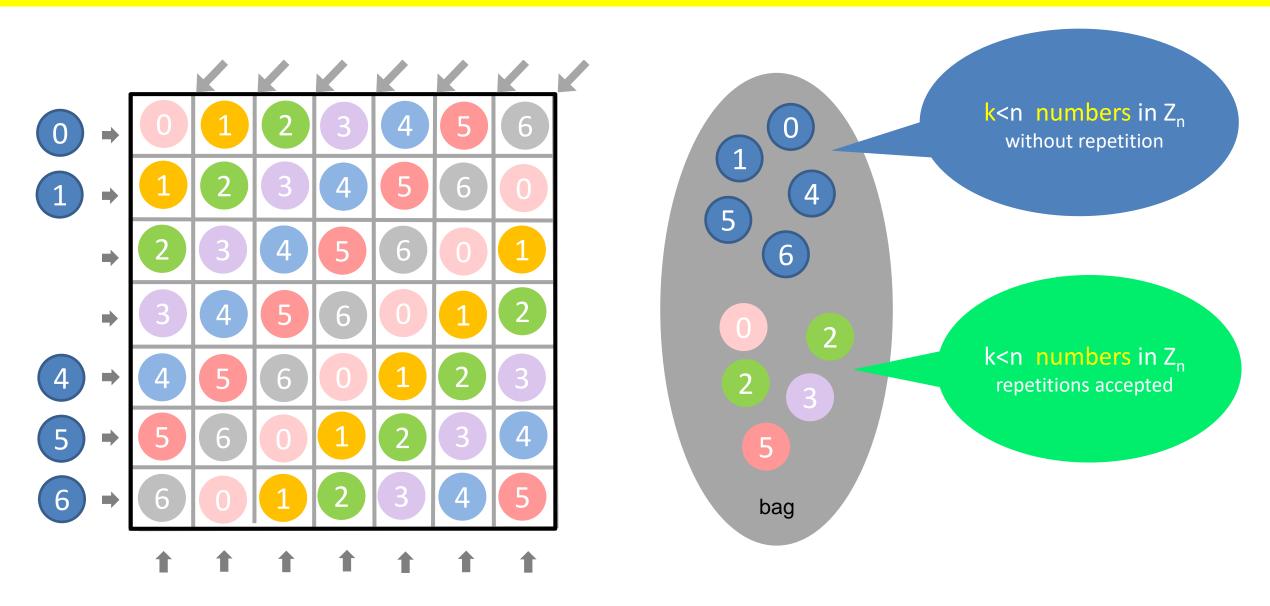


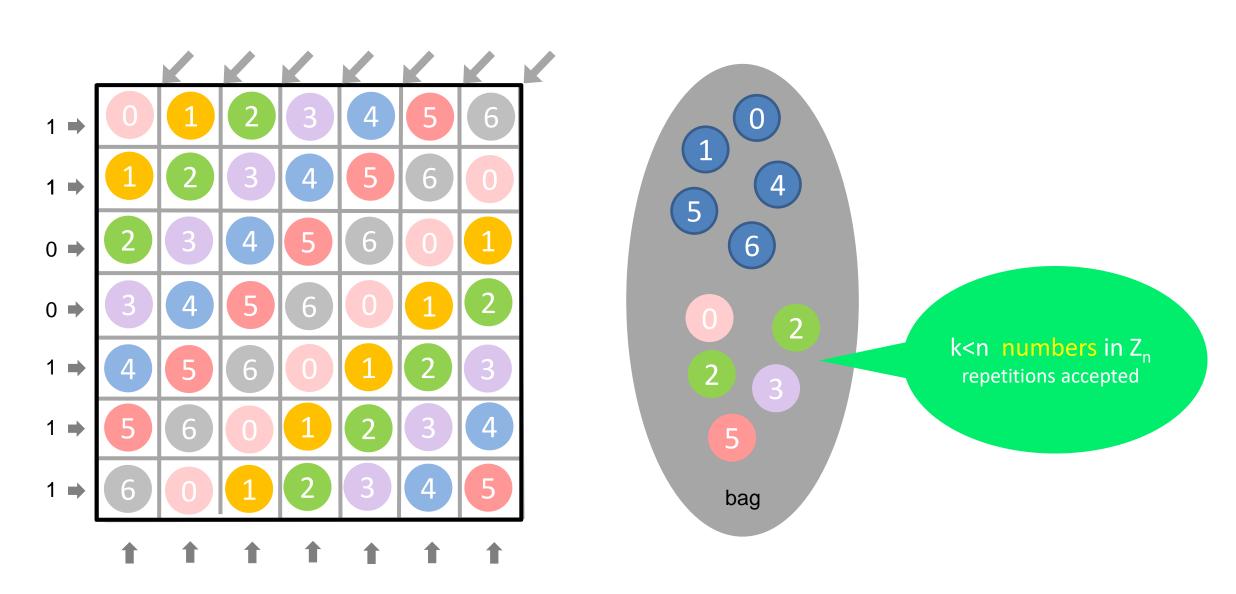
n is prime (here 7)

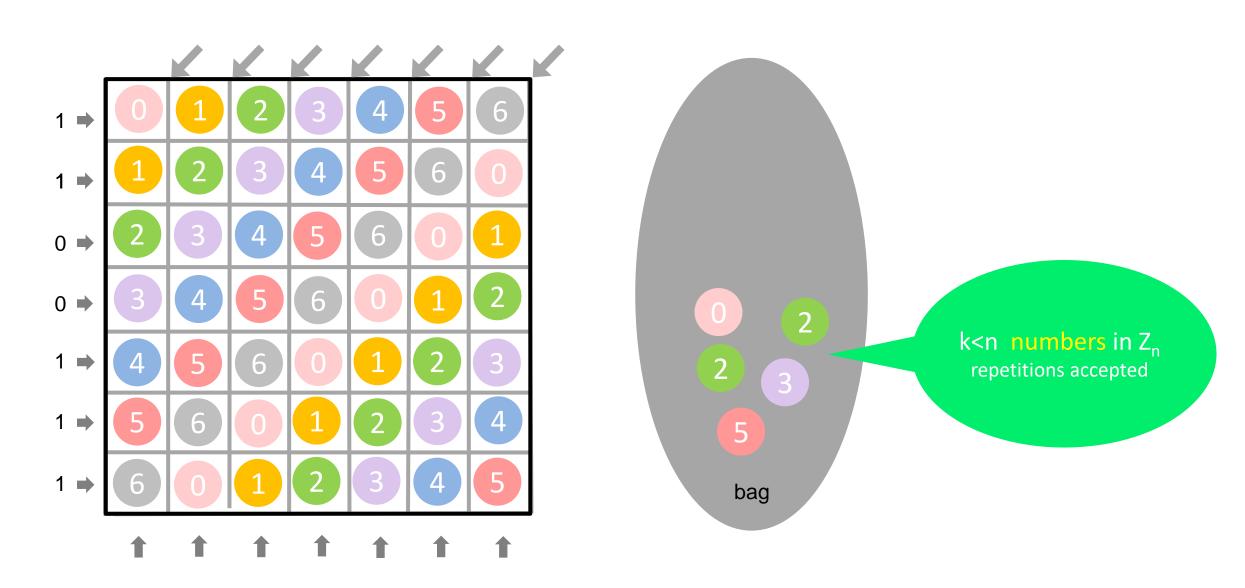


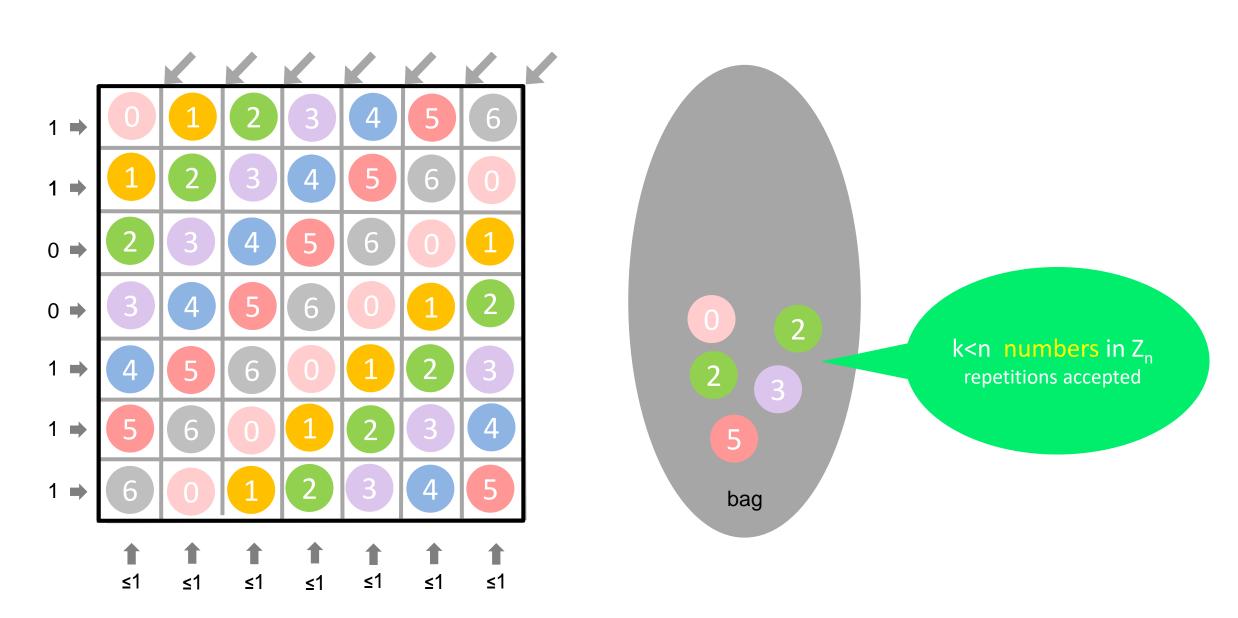


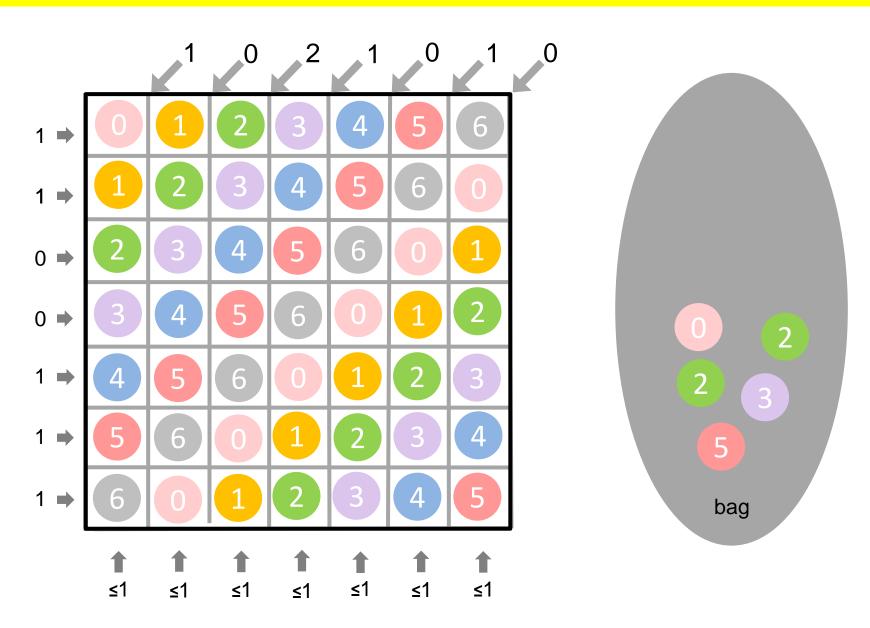


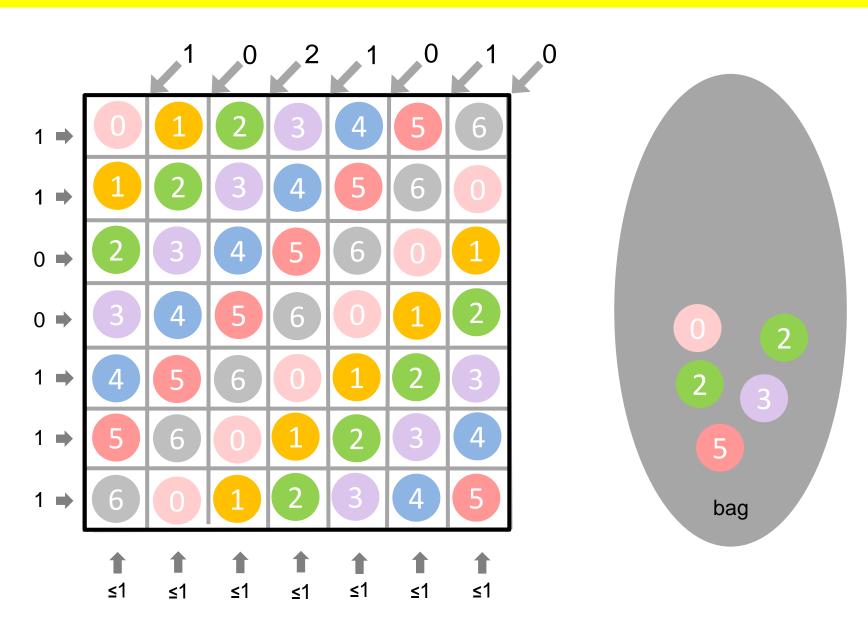


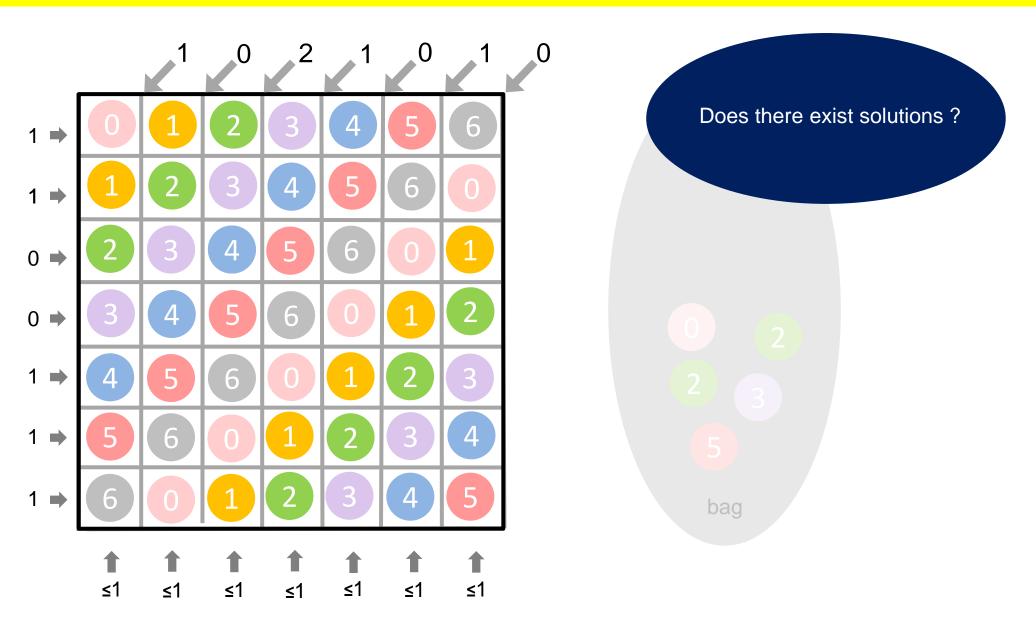


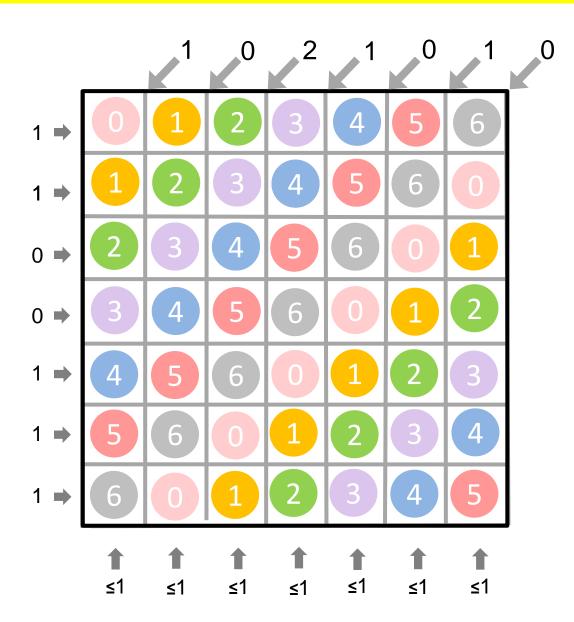












ADDITIVE LATIN TRANSVERSALS

BY

Noga Alon*

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel
and

Institute for Advanced Study, Princeton, NJ 08540, USA e-mail: noga@math.tau.ac.il

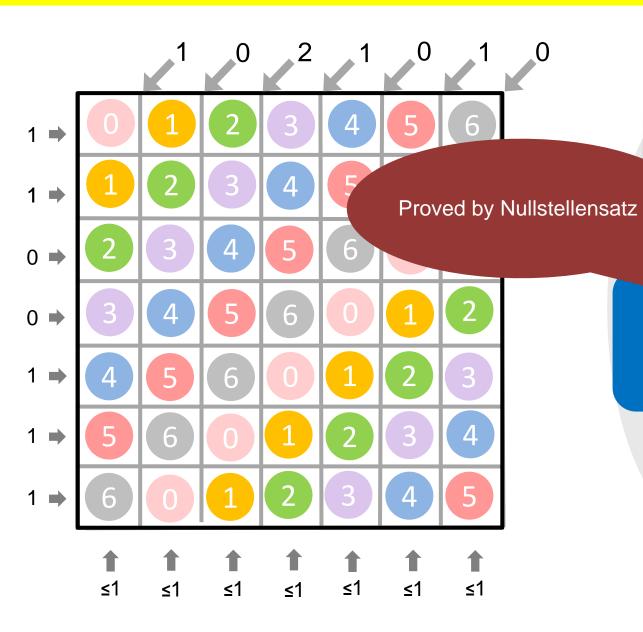
ABSTRACT

We prove that for every odd prime p, every $k \leq p$ and every two subsets $A = \{a_1, \dots, a_k\}$ and $B = \{b_1, \dots, b_k\}$ of cardinality k each of \mathbb{Z}_p , there is a permutation $\pi \in S_k$ such that the sums $a_i + b_{\pi(i)}$ (in \mathbb{Z}_p) are pairwise distinct. This partially settles a question of Snevily. The proof is algebraic, and implies several related results as well.

Alon's Theorem (2000) Solutions always exist!

5

bag



ADDITIVE LATIN TRANSVERSALS

BY

Noga Alon*

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

Institute for Advanced Study, Princeton, NJ 08540, USA
e-mail: noga@math.tau.ac.il

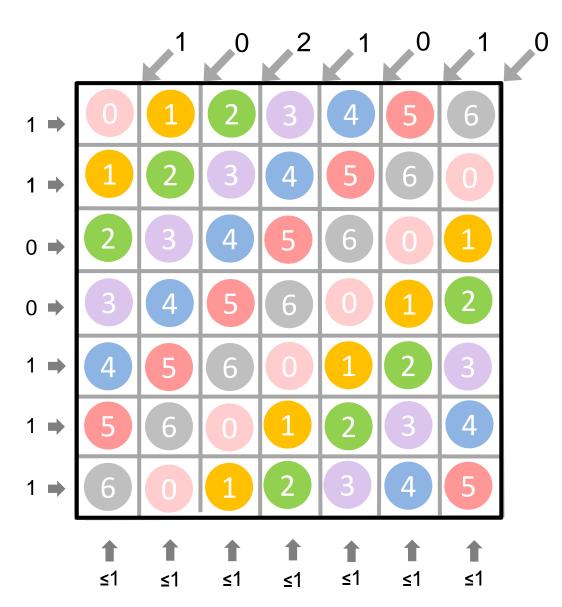
ABSTRACT

We prove that for every odd prime p, every $k \leq p$ and every two subsets $A = \{a_1, \ldots, a_k\}$ and $B = \{b_1, \ldots, b_k\}$ of cardinality k each of Z_p , there is a permutation $\pi \in S_k$ such that the sums $a_i + b_{\pi(i)}$ (in Z_p) are pairwise distinct. This partially settles a question of Snevily. The proof is algebraic, and implies several related results as well.

Alon's Theorem (2000) Solutions always exist!

5

bag



ADDITIVE LATIN TRANSVERSALS

BY

Noga Alon*

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel

Institute for Advanced Study, Princeton, NJ 08540, USA e-mail: noga@math.tau.ac.il

ABSTRACT

We prove that for every odd prime p, every $k \leq p$ and every two subsets $A = \{a_1, \dots, a_k\}$ and $B = \{b_1, \dots, b_k\}$ of cardinality k each of \mathbb{Z}_p , there is a permutation $\pi \in S_k$ such that the sums $a_i + b_{\pi(i)}$ (in \mathbb{Z}_p) are pairwise distinct. This partially settles a question of Snevily. The proof is algebraic, and implies several related results as well.

Alon's Theorem (1999) Solutions always exist!

No polynomial time algorithm is known...

ADDITIVE LATIN TRANSVERSALS

Noga Alon'

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

> Institute for Advanced Study, Princeton, NJ 08540, USA e-mail: noga@math.tau.ac.il

ABSTRACT

We prove that for every odd prime p, every $k \leq p$ and every two subsets $A = \{a_1, \dots, a_k\}$ and $B = \{b_1, \dots, b_k\}$ of cardinality k each of Z_p , there is a permutation $\pi \in S_k$ such that the sums $a_i + b_{\pi(i)}$ (in Z_p) are pairwise distinct. This partially settles a question of Snevily. The proof is algebraic, and implies several related results as well.

Alon's Theorem (1999) Solutions always exist!

Find one...

No polynomial time algorithm is known...

A COMBINATORIAL PROBLEM ON ABELIAN GROUPS

MARSHALL HALL, JR.

1. Introduction. Suppose we are given a finite abelian group A of order n, the group operation being addition. If

$$\begin{pmatrix} a_1, a_2, \cdots, a_n \\ c_1, c_2, \cdots, c_n \end{pmatrix}$$

is a permutation of the elements of A, then the differences $c_1-a_1=b_1,\cdots,c_n-a_n=b_n$ are n elements of A, not in general distinct, such that $\sum_{i=1}^n b_i=\sum_{i=1}^n c_i-\sum_{i=1}^n a_i=0$, since the sum of the c's and the sum of the a's are each the sum of all the elements of A. The problem is to show that conversely given a function $\phi(i)=b_i$, $i=1,\cdots,n$, with values b_i in A subject only to the condition that $\sum_{i=1}^n b_i=0$, then there exists a permutation

$$\begin{pmatrix} a_1, & \cdots, & a_n \\ c_1, & \cdots, & c_n \end{pmatrix}$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \dots, n$, if the b's are appropriately renumbered. This problem is solved in this paper.

Hall's Theorem (1952) Solutions always exist!

There is a polynomial time algorithm

ADDITIVE LATIN TRANSVERSALS

BY

NOGA ALON'

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

> Institute for Advanced Study, Princeton, NJ 08540, USA e-mail: noga@math.tau.ac.il

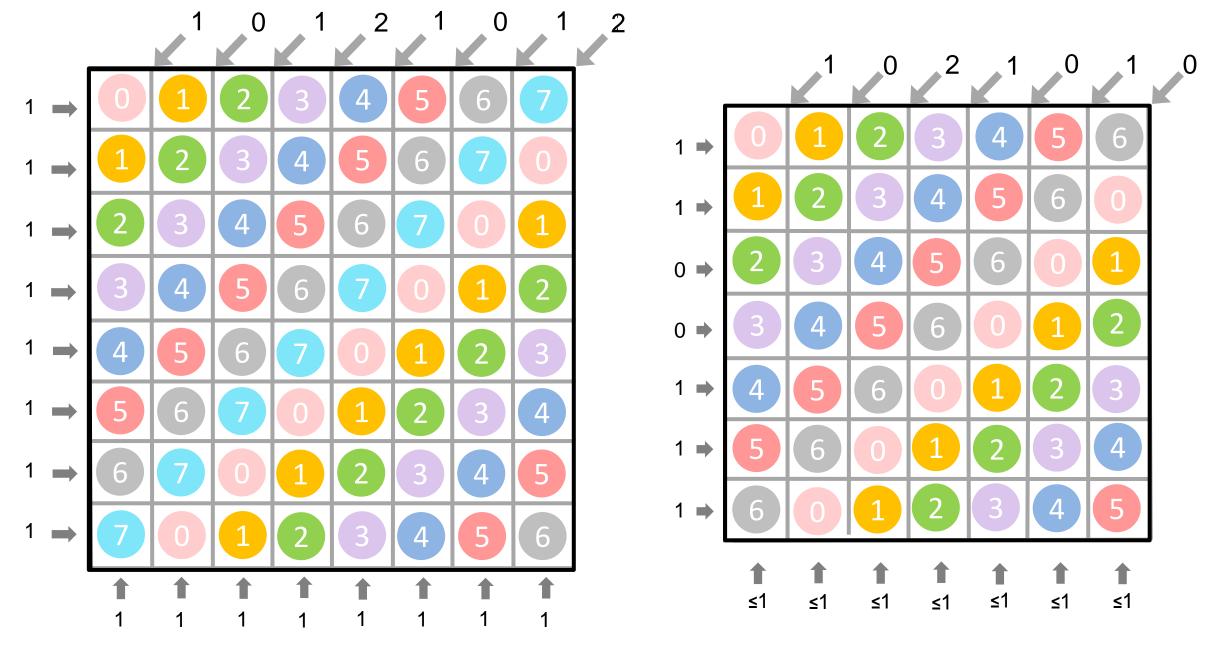
ABSTRACT

We prove that for every odd prime p, every $k \leq p$ and every two subsets $A = \{a_1, \ldots, a_k\}$ and $B = \{b_1, \ldots, b_k\}$ of cardinality k each of \mathbb{Z}_p , there is a permutation $\pi \in S_k$ such that the sums $a_i + b_{\pi(i)}$ (in \mathbb{Z}_p) are pairwise distinct. This partially settles a question of Snevily. The proof is algebraic, and implies several related results as well.

Alon's Theorem (1999) Solutions always exist!

Find one...

No polynomial time algorithm is known...

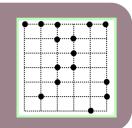


A polynomial time algorithm is known

A polynomial time algorithm is unknown

Peter Schwander, physicist at AT&T Bell labs (in the 90s)

Larry Shepp, CT expert, AT&T Bell labs (in the 90s)



Three-dimensional atomic imaging of crystalline nanoparticles, Sandra Van Aert, Kees J. Batenburg et al... in Nature 2011

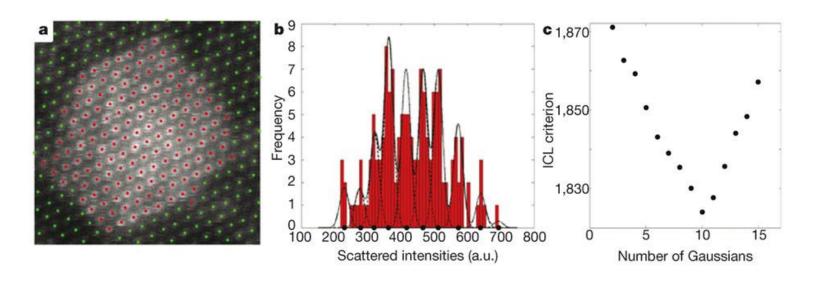
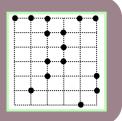
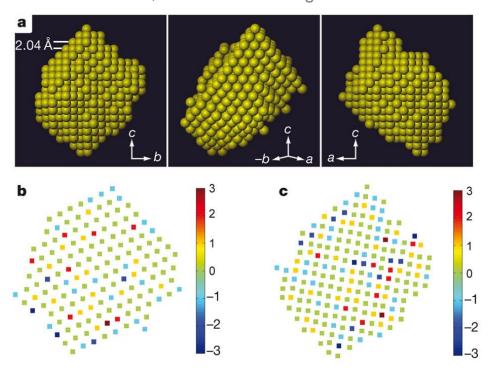


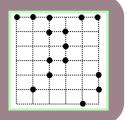
Image of an Ag nanoparticle by Electron microscopy.



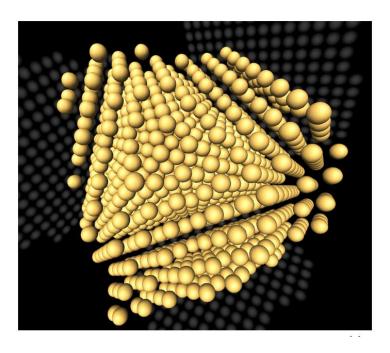
Three-dimensional atomic imaging of crystalline nanoparticles, Sandra Van Aert, Kees J. Batenburg et al... in Nature 2011



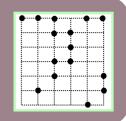
3D reconstruction of an Ag nanoparticle by Discrete Tomography



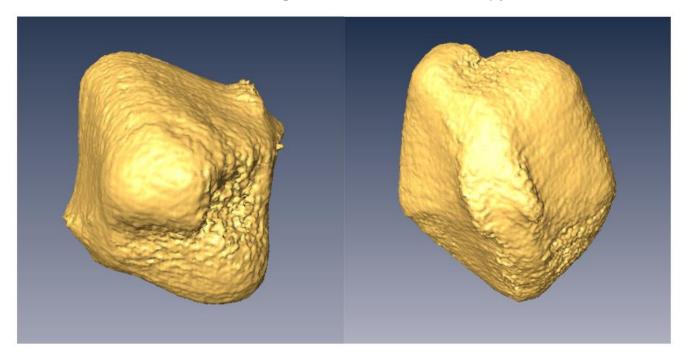
Three-dimensional atomic imaging of crystalline nanoparticles, Sandra Van Aert, Kees J. Batenburg et al... in **Nature** 2011



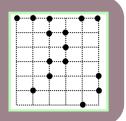
3D reconstruction of an Ag nanoparticle by Discrete Tomography

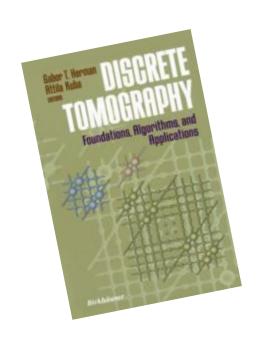


3D Imaging of Nanomaterials by Discrete Tomography, Kees J. Batenburg et al... in **Ultramicroscopy** 2009

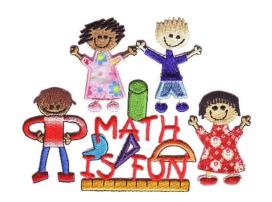


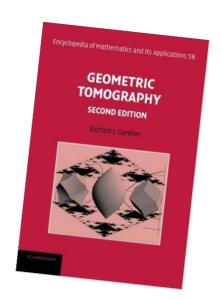
3D reconstruction of a gold nanoparticle.





A. Kuba and G. Herman's book.





Richard Gardner's book.