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Alberto Del Lungo Attila Kuba Alain Daurat Maurice Nivat
(1965-2003) (1953-2006) (1973-2010) (1937-2017)



@ The Origins of Discrete Tomography Multidisciplinary area

1895 - W. Rontgen —

Theoretical discovery of X-rays

Computer

Science 1917 — J. Radon —

Radon transform

Physics

1957 — Ryser and Gale

Binary matrix reconstruction Mathematics
1967 — R. Bracewell- Image

reconstruction radio astronomy

1972—- G. Hounsfield et al.
First CT scan
1976 — Even, Itai, Shamir
Timetables reconstruction

Computerized Tomography

1994 — Irving and Jerrum
3d reconstruction

Medical Imaging

Discrete Tomography
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@ The Origins OM Tomography 1895 X-rays

William Rontgen
radio of the hand

of his wife (1895)

1895: William Roéntgen discovers the X-rays and makes the first Rontgenograms

radio of the hand of Albert \&a%
(1896) 30




Radiograph

William Rontgen

The discovery of X-rays and radiography marks the birth of Medical Imaging.

31



X-ray
detector

William Rontgen
Rontgen recieved the first
Nobel prize of Medecine

The discovery of X-rays and radiography marks the birth of Medical Imaging.
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The first CT scanner has been developped by Allan McLeod Cormack and Godfrey Hounsfield in 1971.
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The first CT scanner has been developped by Allan McLeod Cormack and Godfrey Hounsfield in 1971.




How can we see the interior of an egg
without breaking it ?

387



With one X-ray






@ The Origins OM Tomography Inverse problem

Reconstruction problem:
Compute the image from the X-rays

The first clinical scan
with an EMI scanner
Atkinson Morley hospital (1971)
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1895 - W. Rontgen -

Theoretical discovery of X-rays

Computer
Science

Physics 1917 — J. Radon —
Radon transform

Mathematics

1972—- G. Hounsfield et al.
First CT scan

Medical Imaging



Radon transform R

T

RE@O,)=p [ flx,y)dl

f(x,y) is represented by grey levels Radon transform of f(x,y) : R f (5,r)
R f(9,r) is represented by its grey level

Johann Radon (1887-1956) introduced in 1917

the mathematical transform now called the Radon transform.
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Radon Angle 6
Transform R 4

Johann Radon (1887-1956) introduced in 1917
the mathematical transform now called the Radon transform.
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Radon Angle 6
Transform R 4

Inverse  —l—— (fcoi

Angle 6 0 ° Radon Transform

Johann Radon (1887-1956) introduced in 1917

the mathematical transform now called the Radon transform.
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1967 — R. Bracewell- Image _
reconstruction radio astronomy Mathematics

Medical Imaging



, 1917 — J. Radon —
, o Radon transform

1967 — R. Bracewell- Image
reconstruction radio astronomy

Input: the Radon

f(x,y) is unknown transform R f(x,y)

Inverse problem



1917 — J. Radon —
Radon transform

acewell- Image
reconstruction radio astronomy

Input: the Radon Compute the Fourier
transform R f(x,y) transform f(x,y)

f(x,y) is unknown

Compute the inverse
Fourier transform of 4 f(x,y)



@ The Origins OM Tomography FBP, ART, OSEM...

Many practical algorithms
(Filtered Back Projection, Algebraic Reconstruction Tecniques... and more recent ones)

Filtered back-prajection Model based iterativeseconstruction

#4} o,

Hybrid.iterativereecanstruction

R e

L. Oostveen, K. Boedeker, M. Brink, M. Prokop, F. de Lange and I. Sechopoulos.
"Physical evaluation of an ultra-high-resolution CT scanner", 2020.

50
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Theoretical .
Computer > : :
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Mathematics

Computerized Tomography

Medical Imaging

Discrete Tomography



Computerized Tomography deals with the reconstruction
of a continuous function f:[0,1]2— ][0, 1]
on a continuous domain
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on a continuous domain namely a subset of [0, 1] 2
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Question

Peter Schwander, physicist Larry Shepp, CT expert
at AT&T Bell labs AT&T B'e” labs ’
(in the 90s)

(in the 90s)

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




High Resolution Transmission
Electron Microscope (HRTEM)

at AT&T Bell labs HRTEM image

(in the 90s)

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




at AT&T Bell labs Data might provide the HRTEM image
(in the 90s) number of atoms (with noise)
behind a point

Counting the number of atoms on a line is possible.

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




= o / Can we recover
o the 3D positions of atoms ?

Peter Schwander, physicist
at AT&T Bell labs
(in the 90s)

Counting the number of atoms on a line is possible.

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Counting the number of atoms on a line was possible.
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Combinatorial problem




Peter Schwander, physicist
at AT&T Bell labs
(in the 90s)

Can we solve this class of problems ?

12 0 3 1 1
ot

o AN R Y
3 — -“a#\:“:\l
N Y ‘\O N \3

Combinatorial problem

Larry Shepp, CT expert,
AT&T Bell labs
(in the 90s)



Center for Discrete mathematics and
Theoretical Computer Science

Mini Symposium at DIMACS (Rutger University)
in September 1994 with the title:
Discrete Tomography

Larry Shepp, CT expert,
AT&T Bell labs
(in the 90s)



Center for Discrete mathematics and
Theoretical Computer Science

Larry Shepp, CT expert,
Mini Symposium at DIMACS (Rutger University) AT&T Bell labs
in September 1994 with the title: (in the 90s)

Discrete Tomography

Research group in US and in Europ....



Maurice Nivat Peter Gritzmann Richard Gardner Gabor Hermann

(Université Paris (Technical University (Wester Washingtom (City University of
Diderot) of Munich) University) New York)

+ students, close researchers...

Research group in US and in Europ....
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Theoretical
Computer
Science

1957 — Ryser and Gale
Binary matrix reconstruction

Discrete Tomography

Medical Imaging

Mathematics



1957 — Ryser and Gale

Binary matrix reconstruction

Jude (5 years old)



1957 — Ryser and Gale 0
Binary matrix reconstruction

An instance with 2 directions.



1957 — Ryser and Gale 0
Binary matrix reconstruction

An instance with 2 directions.

(Gale & Ryser — 1957):

Discrete Tomography with 2 directions can be solved in polynomial time.
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(Gale & Ryser — 1957):

Discrete Tomography with 2 directions can be solved in polynomial time.
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(Gale & Ryser — 1957):
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(Gale & Ryser — 1957):
Discrete Tomography with 2 directions can be solved in polynomial time.
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Sets of the grid = set of the complete bipartite graph.

(Gale & Ryser — 1957):

Discrete Tomography with 2 directions can be solved in polynomial time.




NSO
NGRS
S NG

It can be expressed as a
Min Cut/Maw flow problem...

Sets of the grid = set of the complete bipartite graph.

(Gale & Ryser — 1957):

Discrete Tomography with 2 directions can be solved in polynomial time.
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Theoretical
Computer
Science

1957 — Ryser and Gale
Binary matrix reconstruction

1976 — Even, Itai, Shamir
Timetables reconstruction

Discrete Tomography

Medical Imaging

Mathematics
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(Even, Itai, Shamir— 1976):

Q
e
Q
o
&
o
?
al
Z
)
S
®©
0
S
Q
O
o
o
Q
@)
©
i)
&)
£
T




o

I height h=3

A restricted Timetable instance.

(Even, Itai, Shamir— 1976):

Timetable problems are NP-complete.
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1976 — Even, Itai, Shamir

Timetables reconstruction
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Mathematics

1994 — Irving and Jerrum

3d reconstruction

Discrete Tomography

Medical Imaging
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Discrete Tomography with 3 directions in 3D is NP-complete.




@ The Origins of Discrete Tomography Complexity results

Theoretical
Computer
Science

ol 1917 - J. Radon —

1957 — Ryser and Gale Radon transform
Binary matrix reconstruction : ‘
1967 — R. Bracewell- Image

reconstruction radio astronomy Mathematics

1972—- G. Hounsfield et al.
First CT scan
1976 — Even, Itai, Shamir
Timetables reconstruction

Computerized Tomography

1994 — Irving and Jerrum
3d reconstruction

Medical Imaging

Discrete Tomography
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No uniqueness in general

Uniqueness




@ A Uniqueness Result

REEEE:

1957 — Ryser and Gale
Binary matrix reconstruction

9

ey

State of the art

Polynomial time




@ A Uniqueness Result State of the art

RERER
1957 — Ryser and Gale

ey

NP-hard

1994 — Irving and Jerrum
3d reconstruction




A Uniqueness Result State of the art

REEEE:
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1957 — Ryser and Gale
Binary matrix reconstruction
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1994 — Irving and Jerrum
3d reconstruction

011 002
22 e

2009 — Durr, Guinez Matamala 2008 — G.
3 colors Prescribed coefficients

NP-hard

—_—— 9 — D

CETTT
2001 — Brunetti, Del Lungo, G.

2001 - Picouleau
Domino tilings

1999 — Gardner Gritzmann Prangenberg

2d with 3 directions 3d with planar X-rays
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What happens if we search for
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with some wanted geometric properties ?




@ A Uniqueness Result State of the art

RERER
1957 — Ryser and Gale

ey

What happens if we search for

a solution
with some wanted geometric properties ?

e @ O o o o

Polyomino Convex lattice set



@ A Uniqueness Result

1957 — Ryser and Gale
Binary matrix reconstruction

with some wanted geometric properties ?

Connectivity

REEEE:

9

ey

What happens if we search for

a solution

Polynomial time

Convexity

Properties



@ A Uniqueness Result Digital convexity




@ A Uniqueness Result Digital convexity




@ A Uniqueness Result Digital convexity




@ A Uniqueness Result THE Unigueness result

(Gardner Gritzmann1997 + Brunetti Daurat 2003):
For some directions, convex lattice sets
are uniquely determined by their X-rays

and can be reconstructed in polynomial time.




@ A Uniqueness Result

For some directions ?

(Gardner sritzmannl1997 + Brunetti Daurat 2003):
m For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.




@ A Uniqueness Result

For some directions ?

For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.

ﬂm Theorem (Gardner 5sritzmannl1997 + Brunetti Daurat 2003):



@ A Uniqueness Result General Uniqueness result is false




@ A Unigueness Result General Unigueness result is false




@ A Uniqueness Result General Unigueness result is false

All directions

k\‘ are in
m!mm;\

|/

U-polygon



@ A Uniqueness Result Uniqueness result?

All directions
are in
U

|/

//]

U-polygon

Uniqueness result
for the set of if and only if There exists NO U-polygon

directions U




@ A Uniqueness Result Uniqueness result?

When does it exist ?

There exists NO U-polygon




@ A Uniqueness Result
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@ A Uniqueness Result

For which sets of directions U does there exist U-polygons ?
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@ A Unigueness Result U-polygon




@ A Unigueness Result Midpoint polygon
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@ A Unigueness Result Midpoint polygon




@ A Uniqueness Result

V/4

Second iteration



@ A Uniqueness Result Second iteration




@ A Uniqueness Result Second iteration




@ A Uniqueness Result New U-polygon!
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@ A Uniqueness Result Repeat the process
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@ A Uniqueness Result Repeat the process
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@ A Uniqueness Result Repeat the process

By iterating the midpoint transformation, the limit is an affinely regular polygon...



@ A Unigueness Result Repeat the process

regular polygon

By iterating the midpoint transformation, the limit is an affinely regular polygon...



@ A Uniqueness Result Convergence

affine
transformation

—)

regular polygon
affinely regular polygon

By iterating the midpoint transformation, the limit is an affinely regular polygon...



@ A Unigueness Result Convergence

affinely regular polygon

By iterating the midpoint transformation, the limit is an affinely regular polygon...



@ A Uniqueness Result Convergence
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@ A Uniqueness Result Convergence

S INNS
ASNANAN

\ “ ‘“ \\ w iterations
\\ § \\ midpoint
: U k polygon

771

U-polygon affinely regular U-polygon



@ A Uniqueness Result Main Theorem

affinely regular U-polygon

(Gardner Gritzmann1997):
If U has 2 or 3 directions : affinely regular U-polygons always exist

If U has 4 directions : affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4}
If U has 7 directions : affinely regular U-polygons never exist




@ A Uniqueness Result Cross-ratio

Crossing line

AC . BD
BC . AD B

cross-ratio =

The cross-ratio is
invariant by projective
transformations

Set of directions U

(Gardner Gritzmann1997):
has 2 or 3 directions : affinely regular U-polygons always exist

has 4 directions : affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4 }
has 7 directions : affinely regular U-polygons never exist




@ A Uniqueness Result Cross-ratio

Non trivial proof with:
Trignometry Cyclotomic polynomials

P-adic numbers

(Gardner Gritzmann1997):
If U has 2 or 3 directions : affinely regular U-polygons always exist
If U has 4 directions : affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4}
If U has 7 directions : affinely regular U-polygons never exist




@ A Uniqueness Result Consequences

N

/ For cross-ratio not in

N
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(Gardner Gritzmann1997):
If U has 2 or 3 directions : affinely regular U-polygons always exist

If U has 4 directions : affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4}
If U has 7 directions : affinely regular U-polygons never exist




A Uniqueness Result Conseqguences

N

1/ For cross-ratio not in
~
B %:: No affinely regular U-polygon
/ |
/|
No U-polygon

\ ¢

Convex lattice sets are uniquely determined by their X-rays in direction U

(Gardner Gritzmann1997):
If U has 2 or 3 directions : affinely regular U-polygons always exist

If U has 4 directions : affinely regular U-polygons exist iff their cross-ratio is in { 4/3 ,3/2 ,2 ,3 ,4}
If U has 7 directions : affinely regular U-polygons never exist




@ A Uniqueness Result Polynomial time

(Gardner Gritzmann1997 + Brunetti Daurat 2003):
GOOD For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.




@ A Uniqueness Result

(Gardner Gritzmann1997 + Brunetti Daurat 2003):

For some directions, convex lattice sets
are uniquely determined by their X-rays
and can be reconstructed in polynomial time.

(Barcucci-Del Lungo-Nivat-Pinzani 1996):
HV convex polyominoes can be reconstructed
from their horizontal and vertical X-rays
in polynomial time.

Polynomial time
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@ Alon’s Combinatorial Open Problem 1 dollar question

1 0 1 2 1 0 1 2
Y ¥ L L L L LA

Does there exists solutions ?

bag

Sum of the bag=0
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@ Alon’'s Combinatorial Open Problem —

ADDITIVE LATIN TRAN SVERSALS

BY

Noga Avron®
Department of Mathematics, Raymond and Beverly Sackler Faculty of Ezoct Sciences
Tel Aviv University, Tel Aviv 69978, [srael
and
Institute for Advanced Study, Princeton, NJ 08540, USA
e-mail: noga@math.tau. ar.il

1=

ABSTRACT

We prove that for every odd prime p, every k < p and every two subsets
A={ay,..., ax} and B = {by, ... 2br} of cardinality k each of Zp, there
is a permutation & Sk such that the sums @i + by (in Zp) are pair-
wise distinct, This partially settles a question of Snevily. The proof is
algebraie, and implics several related results as well.

Alon’s Theorem (2000)

Solutions always exist!

1=

N -
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ABSTRACT

We prove that for every odd prime p, every k < p and every two subsets
A={ay,..., ax}and B= {b,. .., .} of cardinality k each of Zp, there
is a permutation & Sk such that the sums @i + by (in Zp) are pair-
wise distinct, This partially settles a question of Snevily. The proof is
algebraic, and implics several related results as wejl.

Proved by Nullstellensatz

Alon’s Theorem (2000)
Solutions always exist!
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Alon’s problem
@ Alon’'s Combinatorial Open Problem

ISRAEL JOURNAL OF MATHEMATICS 117 (2000}, 125-130
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wise distinct, This partially settles a question of Snevily. The proof is
algebraic, and implics several related results as wejl.
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Alon’s Theorem (1999)
Solutions always exist!

No polynomial time
algorithm is known...
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Find one...

ADDITIVE LATIN TRAN SVERSALS

BY
Noca Aron*

Department of Mathematics, Raymond and Beverly Sackler Faculty of Ezoct Sciences
Tel Aviv Umvermy, Tel Aviy 69978, [srael
and
Institute for Advanced Study, Frincetan, NI 08540, UsA
e-mail: noga@math.tau. ar.il

ABSTRACT

We prove that for every odd prime p, every k < p and every two subsets
A={ay,..., ax} and B = {by, ... 2br} of cardinality k each of Zp, there
is a permutation & Sk such that the sums @i + by (in Zp) are pair-
wise distinct, This partially settles a question of Snevily. The proof is
algebraic, and implics several related results as wejl.

Alon’s Theorem (1999)
Solutions always exist!

No polynomial time
algorithm is known...




A COMBINATORIAL PROELEM ON ABELIAN GROUPS
MARSHALL HALL, JR.

1. Introduction. Suppose we are given a finite abelian group A of
order #, the group operation being addition. If

('11, ag, - ,a,.)
€1y C2y * %y Cn
is a permutation of the elements of A4, then the differences ¢;—a,

=by, -+ -, Ca—an=b, are u elements of 4, not in general distinct,
such that Y%, bi= D o, ¢i— 2 sy 8:=0, since the sum of the ¢'s
and the sum of the a’s are each the sum of all the elements of 4. The
problem is to show that conversely given a function ¢(7) =5,
i=1, - + -, n, with values b; in 4 subject only to the condition that
3%, b;=0, then there exists a permutation

(an. trey a..)

(2 U 7Y

of the elements of 4 such that ¢;—a;=b;, i=1, + - -, n, if the b's are
appropriately renumbered. This problem' is solved in this paper.

Hall’s Theorem (1952)
Solutions always exist!

There is a

polynomial time algorithm

Find one...
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Conclusion End ?

Question

Larry Shepp, CT expert,
AT&T Bell labs
(in the 90s)

at AT&T Bell labs
(in the 90s)

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Conclusion End ?

Three-dimensional atomic imaging of crystalline nanopatrticles,
Sandra Van Aert, Kees J. Batenburg et al... in Nature 2011
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Image of an Ag nanoparticle by Electron microscopy.

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Conclusion Electron Microscopy

Three-dimensional atomic imaging of crystalline nanopatrticles,
Sandra Van Aert, Kees J. Batenburg et al... in Nature 2011

3D reconstruction of an Ag nanoparticle by Discrete Tomography

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Conclusion Electron Microscopy

Three-dimensional atomic imaging of crystalline nanopatrticles,
Sandra Van Aert, Kees J. Batenburg et al... in Nature 2011
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3D reconstruction of an Ag nanoparticle by Discrete Tomography

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Conclusion Electron Microscopy

3D Imaging of Nanomaterials by Discrete Tomography,
Kees J. Batenburg et al... in Ultramicroscopy 2009

3D reconstruction of a gold nanoparticle.

Discrete Tomography deals with the reconstruction

of a binary function f: Lattice — {0, 1}
on a discrete domain namely a lattice set




Conclusion Books

A. Kuba and G. Herman’s Richard Gardner’s book.

book.
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