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Digital Geometry

Digital Geometry: Geometry on discrete grid

(pixel/voxel representation of a shape)

« acquisition on numerical devices
- representation efficient for several algorithms
- integer based computations



Digitization

Length ?
Topology ?
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Gauss Digitization

Gauss digitization of S: S N hZ?



Digital Topology

Not 8-connected

Not well-composed

&

Not 4-connected

Not simply connected



Par-regularity T. Pavlidis
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Results on Par-Regular Shapes

 The Gauss/surfacic/intersection Digitization of a par(r)-regular shape
is well-composed on a grid with a step h < v/2r. L. Latecki, U.
Eckhardt, and A. Rosenfeld

 Multigrid convergence of integral estimator based on a normal
estimation. 7.-O. Lachaud and B. Thibert



Generalizations of Par-regularity

Par-regularity Reach >0 LTB+ Lipschitz Turn Regulr;r Model

Pavlidis > Federer <> Serra
1982 1959 2019 1984
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Turn of a curve



Definition J. W. Milnor

K(P) = Z Z(a;_qa;,0;0;,)
1€Z/NZ

k(C) = sup k(P)
P inscribed in €




Tangent Indicatrix




Tangent Indicatrix




Tangent Indicatrix




Tangent Indicatrix

6,1



Tangent Indicatrix




Tangent Indicatrix




Important Properties
« For twice differentiable curves € :

Length(C)
k(C) :/ k(s)| ds
0

o Fenchel’s Theorem: For any Jordan curve C, k(C) > 2.
C has a convex interior iff K(C) = 27.



Locally Turn-Bounded curves



Definition of LTB curves

E. Le Quentrec, L. Mazo, E. Baudrier, and M. Tajine

« A Jordan curve C is Locally Turn-Bounded by (8, 9) if for any pair of
points (a,b) of € such that d(a,b) < J, there exists an arc €° of €
joining a and b and such that /i',((l) 2) < 0.

a/ b
<$ -
a
bx\ <9

<0



Local connectivity




Local connectivity

v

4 (g, (5)-LTB curve , a € C,

= B(a, &) N € is path-connected for ¢ < 4.



Locally Turn-Bounded curves

Square-regularity

C (g, 0 )-LTB, p € C, there exists a square of edge-size g and containing

p included in the closure of the interior component of €.
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Curves with Lipschitz Turn

€ has a %-Lipschitz turn if for any arc A of C,

k(A) < ! Length(.A)

r



Relationships with other notions

 Any par(r)-regular curve is ((9, 2r sin(g))-LTB for § € (0, 7) and has
a %-Lipschitz turn

« Any (%, 0 )-LTB curve having a %-Lipschitz turn is par(ry)-regular for
any r; < min(%, 'r)

« LTB curves are quasi-regular

« Forf €[0,7],6 > 0and C a (0,6)-LTB curve,
0 < 2rye)

with y = cos g



Digitization of a LTB curve

¢ (%, 5)-LTB curve

 Any pixel of the Gauss Digitization of € is one-quarter covered by the
shape bounded by C.

 Any pixel which is three-quarter covered by the shape bounded by €
belongs to the Gauss Digitization of €.

 The Gauss Digitization of € is well-composed, 4-connected and simply

connected if h < min(@& % diam((:’))



Locally Turn-Bounded curves

Length estimation
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Links between turn and length
« [A. D. Alexandrov and Y. G. Reshetnyak] : Let € an arc of ends a and b
s.t. k(C) < 7,

|b—af

COS(@)

- [E. Le Quentrec]: Let € a par(r)-regular curve with r > 0. Let €® be a
subarc delimlited by two point a and b such that |b — a| < 2r.

Length(€) <

h—
Length(é’g) < 2rarcsin ( o a )

2r



Future work
 Extension to surfaces in 3D (PhD started 1st October: Lysandre

Macke)
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