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Manifold triangulation
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Topological faithful reconstruction and
topological inference : motivation
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Reconstruction beyond visual realism:
understanding the topology
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Topological faithful reconstruction and
topological inference : motivation

MANIFOLD LEARNING (TDA)

output:

Topological inference
(topology learning)
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Robot configuration space
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Data= movie/pictures topology

Manifold computation

reconstruction -«

For example as
simplicial complex
= triangulation



What does it mean to recover the topology ?
of subsets of euclidean space
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Given a set P of point sampling a submanifold .7, output a simplicial

complex M with vertices in P, which is homeomorphic to the manifold, in
other words M is a triangulation of ./Z/.

Moreover we require the triangulation to be geometrically close:
The map ¢ : ./ — M that realizes the homeomorphism should satisfy:

sup ||gp(x) — x|| is small

X



What does it mean to recover the topology ?
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(of subsets of euclidean space)
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What does it mean to recover the topology ?
of subsets of euclidean space
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While many approaches have been explored, we focus here on variational

methods: the triangulation M should be obtained as the minimum of some
functional under constraints.

More precisely, as the support of a simplicial chain which is minimal
within some homology class.
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What does it mean to recover the topology ?

(of subsets of euclidean space)

For that we start by a variational formulations of Delaunay triangulations

(

Euclidean context.

or more generally regular triangulations) that allows to generalizes it to

non
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Simplest case: a disk in R
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Simplest case: a disk in R
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Simplest case: a disk in R

Delaunay triangulation
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(thanks to D. Attali

Simplest case: a disk in R
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(thanks to D. Attali

Simplest case: a disk in R




(thanks to D. Attali)

Delaunay complex

o € Del(P) <= 3 a sphere that circumscribes ¢ and does not enclose any point of P

P generic
No (d 4 2) points of P lie on a common (d — 1)-sphere
where d = dim(aff P)

Il

N

Triangulation , i.e. homeomorphic simplicial complex

15



Delaunay : variational definitions

For each point v € R™, we consider its lifted image 4 = (u, ||ul/?) € R*H1,
A classical result says that o is a Delaunay n-simplex of P if and only if &
spans an n-face of the lower convex hull of P.

-----------
-----
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parabolic
lifting
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Delaunay : variational definitions

For each point v € R™, we consider its lifted image 4 = (u, ||ul/?) € R*H1,
A classical result says that o is a Delaunay n-simplex of P if and only if &
spans an n-face of the lower convex hull of P.

-----------
-----

_—
-------
---------------

parabolic
lifting

= -
______
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(thanks to D. Attali) 2o

Delaunay : variational definitions

R
T ? = {(]l2]*) | = < R*)

]Rd

T triangulation of Conv(P)

T: lift of T

o Fye(T) = volume between T and paraboloid 2.



(thanks to D. Attali) =

Delaunay : variational definitions

R
T 2 ={(z,z]*) | =+ € R"}

-------- Ao
*,v’ :~ I' :, i .
. e . i
"'"} "1§:.’ =~ _“: . 3 ;“'
Mz lg "
]Rd
T = Del(P) & X

T = DE(?) = triangulation
of lower convex hull of P

o F4.(T) = volume between T and paraboloid 2.

GD generlg (Del(P) = the triangulation of Conv(P) with smallest Delaunay energa
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Delaunay : variational definitions

E401(T) = volume between T and paraboloid 2.

= Z volume between ¢ and P

g -

d-simplex oc€T ‘T

: 1
Delaunay weight of o: wqe(0) = vol(o) length(e)?
(d + 1)(d T 2) e ed%e:of o

A *

intrinsec expression




Delaunay : variational definitions

v
@
; o
N el = /
; v}
%
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L[V1V2V3](x) X 6,(x) = L(x)—x
x? 2
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Delaunay : variational definitions

Triangulation 7' is Delaunay iff.:

1/p l/p
VT, <[ 5T(x)pdx> < ([ 5T/(x)pdx>
) )

Long Chen and Jin-chao Xu. Optimal delaunay triangulations.
Journal of Computational Mathematics, pages 299-308, 2004.

2 )
\.1:2

) {

& Bl i 2
v : E
< 2 E
-2 minimum along the 7" that triangulates &
/’ ‘ x. \:,'.2
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Delaunay : variational definitions

P

Wp(T) = [ 0, (x)Pdx \v/
|z

Triangulation 7' is Delaunay iff.:

T, ) W@ < D w (@

el =y

Long Chen and Jin-chao Xu. Optimal delaunay triangulations.
Journal of Computational Mathematics, pages 299-308, 2004.

= T s B
. i

Bl i 2

25

— .

minimum along the 7" that triangulates &




Delaunay : variational definitions

Triangulation 7' is Delaunay iff.:

w@=( | sy VT, Y w (@ < ) wy(z)

17 €T eT’

Long Chen and Jin-chao Xu. Optimal delaunay triangulations.
Journal of Computational Mathematics, pages 299-308, 2004.

Variational definition of Delaunay
=> triangulation optimization :

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Des-
brun. Variational tetrahedral meshing. ACM Transactions on Graphics
(TOG), 24(3):617-625, 2005.

L. Chen and M. Holst. Efficient mesh optimization schemes based on
optimal delaunay triangulations. Computer Methods in Applied Mechanics
and Engineering, 200(9):967-984, 2011.
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Delaunay : variational definitions

Triangulation 7' is Delaunay iff.:

(1) = [ 6,(x)"d ,
Wp ' ( | 7| g x) VT9 Z Wp(T)p S Z Wp(T)p

el teT’

minimum along the 7" that triangulates &
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Delaunay : variational definitions

Triangulation 7' is Delaunay iff.:

(1) = J 6,(x)"d ,
Wp ' ( | 7| g x) VT9 Z Wp(T)p S Z Wp(T)p

el teT’

K = {all simplices of dimension ay most d}

The triangulation defines a particular chain
in K satisfying the boundary condition
oI’ = 0

and:

1 ifreT
[o) = {0 fre& T

minimum along the 7" that triangulates &

28



Delaunay as linear programming

When LT minimal chain is Delaunay

(Support of) chain | 'is Delaunay iff.:
w,(z) = ([ 5T(x)pdx> VI, Y IT@ W@ < YT @) (o)
7| T T

(among chains [’ such that 0l " = 09)

K = {all simplices of dimension ay most d}

The triangulation defines a particular chain
in K satisfying the boundary condition
oI’ = 0

and:
1 ifreT -0 E
[ = {0 frg T » 2 >
minimum along the chains [ ' such that
ol' = 09

29




shortest path: linear algebra formulation

s there a path between X and &€ ?



shortest path: linear algebra formulation
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s there a path between X and &€ ?

A (linear) algebra formulation of this question ?



shortest path: linear algebra formulation

Pe ¢

e ®c
@
Y

Vector space of 0-chains:
Co={Yoa+ Y B+Y,74Y;6+Y,e| YR

(basis = 0-simplices)

(Think of a sum of weighted Diracs if you prefer)

32



shortest path: linear algebra formulation

ﬁo—>o

FAVAN

Vector space of 0-chains:
C, = {Yaa+Yﬂﬂ+ Yy +Ys6+Y,e|YeE R5}

(basis = 0-simplices)

Vector space of 1-chains:
C, = {Xaa+Xbb +X.c+X;d+X,e+ X f|X € R6}

(basis = “oriented” 1-simplices)

33



shortest path: linear algebra formulation
Co:{Ya05+Yﬂﬂ+Yy7+Y55+Yg€|YEIRS} aﬁ.Lb.é f
(basis = 0-simplices) / X /l’ \

a @ &

€ ={X,a+X,b+X.c+X,d+X e+ X, f1XER e

(basis = “oriented” 1-simplices)

®
Y
Boundary linear operator:

Pe

le
~4/ d-a)=-da=a-p

04
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shortest path: linear algebra formulation

%)
0:C— G ﬁ. ¢ X J

o—a+c+f)=F-a)+(0—-p)+(e—9)
=—e—a

s there a path between ™ and £ ?

Yess —a+c+f

35



shortest path: linear algebra formulation

There a path between (X and & y \J:
— T € |0 =¢e—a

X — —a+c+f

36



shortest path: linear algebra formulation

There a path between (X and & y \J:
— T € |0 =¢e—a

...................................................................

...................................................................
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shortest path: linear algebra formulation

ﬁ .—VQ

There a path between (X and &£ a \
b




shortest path: linear algebra formulation

O
b o—»e

There a path between (X and & y \Ji
NN,
7

©
Y
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shortest path: linear algebra formulation

O
b o—»e

There a path between (X and & y \J:
NN,
7

©
Y

XL~ —a+c+d—e
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shortest path: linear algebra formulation

Shortest path between o and ¢ :

Length of a path 2 between  and ¢ :

length(X') = Z ‘,fl” (edge)‘ length(edge)

edges
(this is a (weighted) L! norm on vector )
)
F o—C »e

c/ Ni X — —a+c+f

ad @ @&

41



shortest path: linear algebra formulation

Q—b‘
Shortest path between o and ¢ : \
min Z ‘SX (edge)‘ weight(edge)
0L =e—a edges

this is a (weighted) L! norm

- o)

c‘)l \ } o—Spo

A a

1 _ a e ji oc
1 |= o7

_ 4

XL~ —a+c+d—e

42



shortest path: linear algebra formulation

Shortest path between o and ¢ : . X ﬁ \]:
Qe [ X3

min Z ‘SZ” (edge)‘ weight(edge)

0X =e—a edges

Linear programming (i.e. simplex algorithm when the field is R)
(but Djikstra is much faster!)

o @ [ ¥
o7

4
X'~ —a+c+d—e

43



boundary operator 0,

82( )=_g7 Oht=—c+b—a

01062=0

oLt +hL+uL+t+t5+1)=a+b+c+d+e+f



Delaunay as linear programming

When LT minimal chain is Delaunay

(Support of) chain | ' is Delaunay iff.: G
w,(7) = ([ 5T(x)pdx)
|7|

VI, ) IT@ wy @) < ) 1T [wy (o)

(among chains [ "such that dl ' = 09 )

The triangulation defines a particular chain
satisfying the boundary condition

» 2 >

: () - x / minimum along the chains [ such that
d
o' = 09
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Delaunay as linear programming

When LT minimal chain is Delaunay

-

(Support of) chain | ' is Delaunay iff.: p
w,(7) = ([ 5T(x)pdx)
|7|

VI, ) IT@ wy @) < ) 1T [wy (o)

T

(among chains [ "such that dl ' = 09 )

Define the following norm on chains:

TN, = ) w,@P|T@)

Stilla L' norm : exponent p is on minimum along the chains [ such that
the weight, not on the coordinate. ol' = 09

46



Delaunay triangulation

1T, = Z w,(2)” | T'(7)| w,,(a>=([ @(x)f’dx) =115,
o]

o€K,

(Attali, L., 2016)

Let P C R? be a finite set of points.
Let Pp be a (d-1)-cycle whose support is the boundary of the convex hull of P

The support of the chain that minimizes T" — ||I'||, under constraint ol" = Pp
is the Delaunay triangulation of P

47



Delaunay triangulation

1T, = Z w,(2)” | T'(7)| w,,(a>=([ @(x)ﬂdx) =115,
o]

o€K,

(Attali, L., 2016)

Let P C R? be a finite set of points.
Let Pp be a (d-1)-cycle whose support is the boundary of the convex hull of P

The support of the chain that minimizes T" — ||I'||, under constraint ol" = Pp
is the Delaunay triangulation of P
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Minimal chain under boundary constraint
(real coefficients)

Minimal chain for a given boundary g By

A S A
arg min |z||, ~1ﬁéf>’*}/@>%>+

&, Oe=p

LT minima are sparse

Minimizing LT norm : L] Path length)
=> shortest path zj: il ’

49




Minimal chain under boundary constraint
(real coefficients)

Minimal chain for a given boundary g

. IAY S \\><f
arg min HxHZ -14\“‘ \/‘\<T<? :

x, 0x=0

L2 minima are not sparse

Minimizing L2 norm
=> harmonic form:

50




Minimal chain under boundary constraint
(real coefficients)

Minimal chain for a given boundary g 3 s
UPVAYZ: Q}ffﬂ
arg min |z, N PV
x, Ox=1
n=1

L2 minima are not sparse

Minimizing L2 norm P — Z Rklz
=> harmonic form: k

(RJ- = electrical resistance)

51




Delaunay triangulation

1T, = Z w,(2)” | T'(7)| w,,(a>=([ @(x)ﬂdx) =115,
o]

o€K,

(Attali, L., 2016)

Let P C R? be a finite set of points.
Let pp be a cycle whose support is the boundary of the convex hull of P

The support of the chain that minimizes T~ ||T'||, under constraint dI" = fp
is the Delaunay triangulation of P

p vp, Behavioras p — oo ?

52



Delaunay order

When lexicographic-minimal chain is Delaunay

(o) = (L l(s(,(x)de) = 15,

The weights wpdefines a preorder <__ on simplices:

Behavioras p - o0 ?

0] Soo 03 dcef} Hp S [1700[3 Vp/ € [pa 00[7 Wp/(dl) < Wp/(dz)
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Delaunay order

When lexicographic-minimal chain is Delaunay

(o) = (L l(sG(x)de) = 15,

The weights wpdefines a preorder <__ on simplices:

Behavioras p - o0 ?

0] Soo 03 d=ef> Hp S [1900[7 Vp/ € [pa 00[7 Wp/(dl) < Wp/(dz)

< is afiner (pre-)order than comparing w, = ||,/ , = max ,(x) = lim w,
x€|o| p—00
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Delaunay order

When lexicographic-minimal chain is Delaunay

(o) = (L l(sG(x)de) = 15,

The weights wpdefines a preorder <__ on simplices:

Behavioras p - o0 ?

0] Soo 03 d=ef> Hp S [1900[7 Vp/ € [pa 00[7 Wp/(dl) < Wp/(dz)

< is afiner (pre-)order than comparing w, = ||,/ , = max ,(x) = lim w,
x€|o| p—00

Woo(o-l) — Woo(62)
but
0] S0 02
and

0) f-oo 01

55



Delaunay order

When lexicographic-minimal chain is Delaunay

(o) = (L l(sG(x)de) = 15,

The weights w,defines a preorder < on simplices: Acute triangle:

Re = Ry

Behavioras p - o0 ?

0] Soo 03 d=ef> Hp S [1900[7 Vp/ € [pa 00[7 Wp/(dl) < Wp/(dz)

For 2-simplices, under a generic condition, one has:

Lemma 7.4. If Condition 1 holds, <. is a total order on the set of Obtuse triangle:
2-simplices of K with: RB

RB(O'l) - RB(O'Q)
0] Saa Ua &= or
Rp(o1) = Rp(o2) and Re(o1) > Re(o2)

56



Lexicographic order

57



Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

> o ‘
S " \.\'.
LY Y
°« v 1
fe) O
g /”‘ ¢ o 3
O ,"
o
.
'
O .\
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Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) = =
N LR S
v ® Y
o, .
Y . 1.
.,{ o o )
S" »
.
o
Qa
..\\
°®
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Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) .. o
Classic graph problem: o ) e
Find minimal path for given edge e I
weights (Dijkstra’s algorithm) ‘'® e
@] PY .t
arg min Z length(e) p=1
ol '=s+t
ecl’

60



Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) .. °
Classic graph problem: o ) e
Find minimal path for given edge e I
weights (Dijkstra’s algorithm) e J°
@ ® ‘t
arg min Z length(e)> p=2
ol '=s+t

ecl’

61



Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) .. °
C o] > .. ] ¢ ¢ @] 0..
Pythagoras: a/\b o . o
\) o

© i

/A ¢ o.

zacb > > = ac’ + cb? < ab? .

> ® 't
arg min Z length(e)> p=2
ol '=s+t¢
ecl’
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Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) .. °
ST
S ° o_0 e} .0
®© y
P O
O
O PY ‘t
arg min Z length(e)* p=4
ol '=s+t¢
ecl’

63



Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.
1D simplicial complex = Complete graph (= one edge by points pairs

) e 2 S s O
O 5 e} ; ¢ N] Q.
f;" ) :..
e P
A =2 o 9
® "
Ps /]
<
O e"‘
[
arg min Zlength(e)8 p=3
ol'=s+t
ecl’
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Lexicographic order minimal 1-chain

Connect the some dots to form a path between s and ¢

Obijective: find path going through “densest” parts of the point cloud.

1D simplicial complex = Complete graph (= one edge by points pairs) .. °
e] ® .‘ : v v :‘.
® O
p O
° O
o) o]
S ° L O O
® e
P (@]
@]
O .. .
d 't
arg min E length(e)”
ol '=s+t¢
ecl’

Behavioras p — o0 ?

65



Lexicographic order minimal 1-chain

Limit behavior as p — oo ? : lexicographic order

Assume no two edges have same length (generic condition):
Sort edges along decreasing length:

wy>w,> ... >wy ,wherew; = length(z;)

dp € N,‘v’i,wl?’ > Zw]?’
U2 J>1

F:T1+T3+...

[’ Elex

66



Lexicographic order minimal 1-chain

Analogy for lexicographic order: “Rock hopping"

Which path is smaller in the lexicographic order ?

67
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Lexicographic order minimal 1-chain

Analogy for lexicographic order: “Rock hopping"

Which path is smaller in the lexicographic order ?

FZ Elex 1_‘1

68

68



Lexicographic order

When the field is Z, := Z/2Z, we allow us a

small abuse of notation, chains are identified to
sets of simplices and :

a+b=a—b=(auUb)\(anb)

vector sum (or difference) is seen as
set theoretic symmetric difference

69



Lexicographic order

< defines a lexicographic order L, on chains:

=1 Wy
I Elex "= 2t
. o, =max{cel -T"} el
r, |" 5
(With coefficients in Z,, I'; — 1’5 (or equivalently I'; +1)is
the symmetric difference between I'; and I', seen as sets)
2

70



Delaunay order

When lexicographic-minimal chain is Delaunay

Behavioras p - o0 ?

Lemma 7.4. If Condition 1 holds, <., is a total order on the set of
2-simplices of K with:

RB(O'l) 24 RB(UQ)
Tl San 05 or
Rp(o1) = Rp(o2) and Re(o1) > Re(o2)

When < is a total order, it defines a lexicographic order L, . on chains:

| R ) (d:) § °f
| Opax =max._{c€l| -T,} €T,

(With coefficients in Z,, I'; — I'; is the symmetric difference between I'; and I',)) ¥

71



Lexicographic order

0y <0, < ...<0y_

< defines a lexicographic order L, on chains:

W3
rc, I < Zr(a) i < Zr(a) pX
w
I, Lo
(With coefficients in Z,, I'; — 1’5 (or equivalently I'; +1)is
the symmetric difference between I'; and I', seen as sets)
2

72



Delaunay triangulation

When lexicographic-minimal chain is Delaunay

P Pp

Theorem 1 Let P = {(Py,p1),..-,(Pn,un)} CR® xR, with N >n+1, be
wetghted points in general position and Kp the n-dimensional full simplicial

complex over P. Denote by fp € Cp—1(Kp) the (n—1)-chain, set of simplices
belonging to the boundary of the convex hull CH (P).
Then the simplicial complex |I'min| support of

Llex

i = rEnin {F € Cn(Kp),0I = ,BP}

s the reqular triangulation of P.

(Cohen-Steiner, L.,Vuillamy 2020)

/3



Delaunay triangulation

When lexicographic-minimal chain is Delaunay

P Pp

Theorem 1 Let P = {(Py,p1),..-,(Pn,un)} CR® xR, with N >n+1, be
wetghted points in general position and Kp the n-dimensional full simplicial
complex over P. Denote by fp € Cp—1(Kp) the (n—1)-chain, set of simplices
belonging to the boundary of the convex hull CH (P).

Then the simplicial complex |I'min| support of

I ;, = min {F € Cn(Kp),0I = ,BP}

Llex

s the reqular triangulation of P.

—This extends to smooth (positive reach) 2-manifolds

74
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definition : offset of a set

We denoteby S @ B(€) or sometime S@g
the Minkowski sum of S and a the ball B(¢€) of radius €

In other words the E-offset of S
In other words, S «inflated » of € :

S@® Ble) = 5% := | |B(x,e) = {y e R | d(y.S) < g}

xeS
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Recovering the homotopy type from a
sampling set

a set

14



Recovering the homotopy type from a
sampling set

a set a sampling S

/8



Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Recovering the homotopy type from a
sampling set

® B(e)

aset an sampling
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Recovering the homotopy type from a
sampling set

S @ B(¢)

a set an offset of the sampling
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Medial axis and reach

The reach of a closed set is the infimum of distances
between points in the set and points in its medial axis

/ Medial Axis
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Reconstruction Theorem for set with positive reach

R < reach(S) SCP®B() and P cCS®& B(S)

General set of positive reach:
If € and § satisfy

Medial Axis

e+v235 < (V2-1)R,
x

there exists a radius r > 0 such that the union of balls P & B(r)
deformation-retracts onto S along the closest point projection. In
particular, r can be chosen as r = (R + €)/2

Weaker conditions for manifold of positive reach:

If € and 0 satisfy

(R — ) — 2> (4f— 5) R

These conditions are tight for retrieving the homology
and homotopy by some offset of the sample
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Reconstruction Theorem for set with positive reach
R < reach(S) SCP®B() and P C S B()

These conditions are tight for retrieving the homology and
homotopy by some offset of the sample

e+v256 < (V2-1)R,
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Recovering the homotopy type from a

sampling set
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Regularity measures guaranteed homotopy
type recovering from samples

Reach and medial axis Metric distorsion

closed
set §

(smooth objects)

(not necessarily

Critical function and p-reach Convexity defect smooth)

D/n/ }.
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When a simplicial complex over a point sample
recovers the homotopy type

P. Niyogi, 5. Smale, and S. Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete Comput. Geom., 39:419-441,

Dominique Attali, Hana Dal Poz Koufimskd, Christopher Fillmore, Ishika reach
Ghosh, André Lieutier, Elizabeth Stephenson, and Mathijs Wintraecken. Opt1—
mal homotopy reconstruction results\a la niyogi, smale, and weinbergez:
preprint arXiv:2206.10485, 2022.

(smooth concavities)

(optimal)

Critical function &

F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compact sets M-reaCh
in Euclidean space. Discete Comput. Geom., 41:461-479, 2009. orsm OOth)

D. Attali, A. Lieutier, and D. Salinas. Vietorisrips complexes also provide topo-

logically correct reconstructions of sampled shapes. Comput. Geom., 46:448-465,
2013.

(best known constants for Cech complexes)

Convexity defects

Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman.
Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. (SoCG 2020)

(best known constant for Vietoris-Rips complexes)
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When a simplicial complex over a point sample
recovers the homotopy type

P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete Comput. Geom., 39:419-441,

2008 K
Dominique Attali, Hana Dal Poz Koufimskd, Christopher Fillmore, Ishika
Ghosh, André Lieutier, Elizabeth Stephenson, and Mathijs Wintraecken. Opt1—
mal homotopy reconstruction results\a la niyogi, smale, and weinbergez:
preprint arXiv:2206.10485, 2022.

reach
(smooth concavities)

(optimal)

Critical function &

F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compact sets M-reaCh

in Euclidean space. Discete Comput. Geom., 41:461-479, 2009. o) smooth)
D. Attali, A. Lieutier, and D. Salinas. Vietorisrips complexes also provid
logically correct reconstructions of sampled shapes. Comput. Geom., 46:4¢ . thanks to
2013. ... Antoine Commaret’s PhD

Convexit)

(best known constants for Cech complexes)

Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman.
Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. (SoCG 2020)

(best known constant for Vietoris-Rips complexes)
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Cech complex and (O/-complex

AVAA
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By the nerve Theorem, both Cech complex and (¥-complex
have the homotopy type of the corresponding union of balls

2300
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From sample to homotopy type
alpha-complex, Cech-complex,..

with high confidence from random samples. Discrete Comput. Geom., 39:419-441,
2008.

Dominique Attali, Hana Dal Poz Koufimské, Christopher Fillmore, Ishika K reach
Ghosh, André Lieutier, Elizabeth Stephenson, and Mathijs Wintraecken. Opti- e

mal homotopy reconstruction results\a la niyogi, smale, and weinberg 2 smooth ConcaVItleS)
preprint arXiv:2206.1

Critical function &

er, and A. Lieutier. A sampling theory for compact sets K ﬂ -reach
iscete Comput. Geom., 41:461-479, 2009. O Smooth)

F. Chazal, D. Cohe;
in Euclidean space.

D. Attali, A. Lieutier, and D. Salinas. Vietorisrips complexes also provide topo-
logically correct reconstructions of sampled shapes. Comput. Geom., 46:448-465,

2013. &
Convexity defects
I (best known constants for Cech complexes) I A

Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman.
Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. (SoCG 2020)
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From homotopy type to triangulations
(= homeomorphisms)




From homotopy type to homeomorphisms

(triangulations)



From homotopy type to homeomorphisms

(homological approaches to triangulations)



From homotopy type to homeomorphisms

(homological approaches to triangulations)
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Fundamental class
(orientable and non-orientable, with/without boundary)

If M is a connected compact orientable d-manifold, its d-homology group is one
dimensional and a generator of it is called the Fundamental class.

dimH, (M Z,) = 1

If the coefficients field is Z, = Z/27Z, this is also true
for non-orientable (compact, connected) manifolds.
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Fundamental class
(orientable and non-orientable, with/without boundary)

If M is a connected compact orientable d-manifold, its d-homology group is one
dimensional and a generator of it is called the Fundamental class.

dimH, (M Z,) = 1

If the coefficients field is Z, = Z/27Z, this is also true
for non-orientable (compact, connected) manifolds.

For manifolds with boundaries, this generalizes with relative homology:
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Manifold fundamental homology class

dimH,M") =1
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Manifold fundamental homology class
A connected = dimH (.Z9) = 1

dimH,M") =1
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Manifold fundamental homology class
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Manifold fundamental homology class
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Manifold fundamental homology class




Manifold fundamental homolo gy class
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Manifold fundamental homolo gy class

L969696596%,
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Manifold fundamental homolo gy class
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o=0 (=T €kero,)




Manifold fundamental homology class

OAv

H,

_ kero,

=— >

-

oI'=0 =1 ekero,

But... I'€eImo, = [, =0
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Manifold fundamental homology class

¢ < 11—‘/
6%

_ kero,

B Im 02

H,

950 6

9696969 r-r=0,p

['—T"€Im az — [F]Imdz = [F,]Imaz

< | and " are homologous cycles



In particular, under adequate sampling conditions and parameters, Cech
or Vietoris-Rips complexes K share the homotopy type and therefore

the d-homology of the complex.
Which is then is one dimensional and reproduces the fundamental class

of the manifold.

: Hd(K’ ZZ) ~ ZZ = H (K contains a single non zero element.

113



Fundamental class

=

= H (K) contains a single non zero element.

But Homology classes are not geometric.: we look for a particular
simplicial chain representative of the homology class whose support
could be homeomorphic to the sampled manifold:

We search for it as the minimum representative chain in the fundamental class
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Two canonical problems

Minimal chain for a given boundary [

Given / € C,_,(K, ) find:
[ =min{l’ € C«K,F),dl" = f}

Minimal chain homologous to o

Given o € C/K, [F) find:
[, = min{a+odw,w € Cy (K, F)}

115
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Two canonical problems (Z, coefficients)

0
A ,
Minimal chain for a given boundary [ ¢“\[\/J. \. \

Given / € C,_,(K, Z,) find: .l p /
.
['in =min{l’ € C(K, Z,),0l" = j}

dim(K) =1

Minimal chain homologous to o

Given/oo € C/(K, Z,) find:
[ in/F min{a+ow, w € Cp (K, Z,)}

min according to:

dim(K\ — )

* Llnorm,
* lexicographic order.

NP-hard in general (Chen, Freedman, 2011)
@(n3) (Cohen-Steiner, L, Vuillamy, 2019)
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O(n>) general algorithm

same as total reduction in homological persistence

0441 =R.V +

Z 4
(1 110 0 (1) 0) (1)
01100 1 0 0
11110 0 1 0
R=|10010 Ty=a=]1 r =1 =10
1 000 0 0. 0
é)oooo 1 w 0
01 0 0 1) \0)

In R, there is exactly one column with a lowest 1 for each reducible simplex 1

Total reduction of I" using the reduced boundary operator R

Algorithm 2: Total reduction algorithm

Inputs: A d-chain I', the reduction matrix R from Algorithm 1
for i < m to 1 do
if I'[i] # 0 and 35 € [1,n| with low(j) =i in R then
| T'<T+R,
end

end
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Minimal homology representative cycle

Some related works on L'minimal homologous chain...

F ——— Hardness results
_~Ftin W Chambers, Jeff Erickson, and Amir Nayyeri. Minimum

(linear programming):
cuts and shortest homologous cycles. In Proceedings of the tw ty-

fifth annual symposium on Computational geometry, pages 377
CM, 2009.

Chao Chen an . Quantifying homology classes. NP-Hard in general
arXiv preprint arXiv:0802.2865, 2008. fOr Coeﬂ:iCientS in Zz

Chao Chen and Daniel Freedman. Measuring and computing nat-
ural generators for homology groups. Computational Geometry,

orthy. Optimal
homologous cycles, total unimodularity, and linear programming.
SIAM Journal on Computing, 40(4):1026-1044, 2011.

Tamal K Dey, Tao Hou, and Sayan Mandal. Computing mini-
mal persistent cycles: Polynomial and hard cases. arXiv preprint
arXiv:1907.04889, 2019.

( Thanks to T. Dey et Al. for the figures)
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Minimal homology representative cycle

Some related works on L'minimal homologous chain...

Hardness results
Erin W Chambers, Jeff Erickson, and Amir Nayyeri. Minimum (linear programming):
cuts and shortest homologous cycles. In Proceedings of the twenty-
fifth annual symposium on Computational geometry, pages 377—

385. ACM, 2009. polynomial algorithm
Chao Chen and Daniel Freedman. Quantifying homology classes. when total unimodul arity
arXiv preprint arXiv:0802.2865, 2008.

Chao Chen and Daniel Freedman. Measuring and computing nat-
ural generators for homology groups. Computational Geometry,
43(2):169-181, 2010.

Chao Chen and Daniel Freedman. Hardness results for homology
localization. Discrete & Computational Geometry, 45(3):425—448,/:{

A5

of boundary operator

4
4

Tamal K Dey, Ta : lal. nputing mini-
mal persistent cycles: Polynomial and hard cases. arXiv preprint
arXiv:1907.04889, 2019.

ata 1) 1\/] ave ¥ 0

( Thanks to T. Dey et Al. for the figures)
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Two canonical problems again
(for lexicographic minima)

Lexicographic-minimal chain for a given boundary /‘\/\/J. ' \
Given } € C,_((K, Z,) find: i\\ / \
Fmin = mln{r - Cd(K, Zz), ar = ,B}

Elex

Lexicographic-minimal homologous chain:
Given a € C/K, Z,) find:

Elex

pr=T,and =1, are Ilnear maps, (as for L? minima)
but minima are sparse (as for L! minima).
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O(na(n)) algorithm in co-dimension 1

Lexicographic-minimal homologous chain:
Given o € C/(K, Z,) find:
[' i, = min{a+dw, w € Cy (K, Z,)}

Elex

Once d-simplices are sorted (in time O(n log n)):

O(n a(n)) algorithm using union-find data structure on the dual

graph to solve a lexicographic MIN-CUT/MAX-FLOW problem.

: UT st a.
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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lve cycle

| homology representat

Inima

M

| cycle

IC-Minima
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Triangulation of positive reach 2-manifolds

P C M is an (e, n)-sampling of M iff:
® dH(P,M) < E
e Vp.q € P.p#q=d(p.q) >n

\:

e LN Y
,‘%‘i\?d \;\p

=~

U 5 \4’»
Do (N
‘*?ﬁ*%}‘\

VRN

Theorem 1. There are constants Cy,Cs, C3 such that:
If M is a smooth 2-manifold embedded in R™ with reach R, P an

(€,n)-sampling of M and K a Cech or Vietoris-Rips complex on K
with parameter X\, such that:

Cie< A< (C9R K captures the homotopy type
= ﬁz — 1
and:
£ < Cs (ﬂ) 0 Lexicographic minimal chain in
R € H,(K, Z,) is a triangulation
Then if:

T = min Ker(ds) \ Im(03)

lex

The restriction of waq to |T| is an homeomorphism on M. It follows
that (|T|,7am) is a triangulation of M.
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Triangulation of positive reach 2-manifolds
(by linear programming)

. (Dominique Attali and L. "Delaunay-Like Triangulation of Smooth
Il = Z w,(2)” | T'(7)| Orientable Submanifolds by ¢1-Norm Minimization. » 2022)

o€K,

The support of the chain that minimizes T" — ||T||,
o' =0

under constraint {load o, Approx(Ty, ) = 1,

triangulates the manifold.

Approx(T,, M)




Why proofs does not extend to 3-manifolds ?

good sampling conditions
=> Delaunay triangles are smalls and cannot be too flat

Therefore, on a Manifold with large reach,
they cannot be « vertical »
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Why proofs does not extend to 3-manifolds ?

But for dimension > 3 manifolds,
simplices may be arbitrary flat !

slivers !
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Why proofs does not extend to 3-manifolds ?

But for dimension > 3 manifolds,
simplices may be arbitrary flat !

slivers !

Perturbation methods works this out ... at least in theory
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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| homology representative cycle
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Minimal homology representative cycle

Examples of lexicographic-minimal cycle

e




Minimal homology representative cycle

Examples of lexicographic-minimal cycle
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Minimal homology representative cycle




Minimal homology representative cycle

Examples of lexicographic-minimal cycle




Thank you !



Metric distortion &J ¢ as measure of regularity of a set §

(Boissonnat, L, Wintraecken, 2017)
Theorem 1. If S C R? is a closed set, then

rch S = sup {7" >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin |a2— b|},
7,.

where the sup over the empty set s 0.

Metric distortion ¢ as measure |; _, g ) = sup dga,b)

of regularity of a set S ? la—bl||<t
Condition above can be rewritten as: D(t) < 2rarcsin o
r
ﬂ - -
According to Gromov et Al.*: D) < Et = S is simply connected
24/2
D) < t => S is contractible

T

*Metric Structures for Riemannian and Non-Riemannian Spaces, M. Gromov, M. Katz, P Pansu, S.Semmes
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O(n>) general algorithm

Lexicographic-minimal homologous chain:
Given o € C/(K, Z,) find:
[' i, = min{a+dw, w € Cy (K, Z,)}

Elex

A chain I is said to be a reduction of a chain I if:

["is homologoustol'and I <, I’
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O(n>) general algorithm

Lexicographic-minimal homologous chain:
Given o € C/(K, Z,) find:
[' i, = min{a+dw, w € Cy (K, Z,)}

=lex

(d + 1)-simplices

VoYY ovoy

(1 1 1 1 0}«

0O 1 1 1 1]

110 1 e d-simplices ordered
dgi1 =11 0 0 1 O« along increasing <

01 00 1]<

I 00 0 1]+

0 0 1 1 0)«
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O(n>) general algorithm

(1111 0) (1 1100
01111 01100
1 110 1 1 1110
dse1=11 0 0 1 0|=R.V R=|1 0010
01001 O1 00O
1 00 01 1 00 0O
0011 0 0 01 00

\ /

In R, there is exactly one column with a lowest 1 for each reducible simplex 1

Same as Homological persistence

Algorithm 1: Reduction algorithm for the 0,1 matrix

R = 0441
for j « 1 ton do
while R; # 0 and Jjp < j with low(jy) = low(j) do
| Rj < Rj+ Ry,
end
end
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O(n>) general algorithm

0441 =R.V +
£ 7 v
(1 1 10 0 (1) 0)
01100 1 0
11110 0 1
R=(1 0010 Iy=a=]|1 =11
01000 0 0
1 0000 1 1
\ood)oo) w \0)

In R, there is exactly one column with a lowest 1 for each reducible simplex 1

Total reduction of I" using the reduced boundary operator R

Algorithm 2: Total reduction algorithm

Inputs: A d-chain I', the reduction matrix R from Algorithm 1
for i «+— m to 1 do
if I'[i] # 0 and 35 € [1,n| with low(j) =i in R then
| T'<T+R,
end

end
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O(n>) general algorithm

d;41 =RV +
7 ) 4 v
(1 110 0 (1) 0) (1)
01100 1 0 0
1 1110 0 1 0
R=]|1 0010 [p=a=]|1 =11 =10
1 000 0 LOJ 0
@oooo 1 %’P 0
01 0 0 1) \0)

In R, there is exactly one column with a lowest 1 for each reducible simplex 1

Total reduction of I" using the reduced boundary operator R

Algorithm 2: Total reduction algorithm

Inputs: A d-chain I', the reduction matrix R from Algorithm 1
for i «+— m to 1 do
if I'[i] # 0 and 35 € [1,n| with low(j) =i in R then
| T'<T+R,
end

end
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