A Lower Bound for Union Volume Estimation and Approximating Klee's Measure Problem

Kasper Green Larsen André Nusser Karl Bringmann Eva Rotenberg Yanheng Wang

Introduction

Union Volume Estimation & Klee's Measure Problem

Union Volume Estimation

Given:

Objects O_1, \ldots, O_n with access:

1) Volume(i):

2) Sample(i)

3) Contains(p, i)

Union Volume Estimation

Given:

Objects O_1, \ldots, O_n with access:

1) Volume(i):

2) Sample(i)

3) Contains(p, i)

Want:

 $(1+\varepsilon)$ -approximation of $\operatorname{Vol}(\bigcup_i O_i)$ with constant probability

Union Volume Estimation

Given:

Objects O_1, \ldots, O_n with access:

1) Volume(i):

2) Sample(i)

3) Contains(p, i)

Want:

 $(1+\varepsilon)$ -approximation of $\operatorname{Vol}(\bigcup_i O_i)$ with constant probability

Klee's Measure Problem

Given:

Boxes $O_1, \ldots, O_n \subset \mathbb{R}^d$

1

Union Volume Estimation

Given:

Objects O_1, \ldots, O_n with access:

1) Volume(i):

2) Sample(i)

3) Contains(p, i)

Want:

 $(1+\varepsilon)$ -approximation of $\operatorname{Vol}(\bigcup_i O_i)$ with constant probability

Klee's Measure Problem

Given:

Boxes $O_1, \ldots, O_n \subset \mathbb{R}^d$

1 :

Want:

 $Vol(\bigcup_i O_i)$, or some approximation

Union Volume Estimation

Given:

Objects O_1, \ldots, O_n with access:

1) Volume(i):

2) Sample(i)

3) Contains(p, i)

Want:

 $(1+\varepsilon)$ -approximation of $\operatorname{Vol}(\bigcup_i O_i)$ with constant probability

Klee's Measure Problem

Given:

Boxes $O_1, \ldots, O_n \subset \mathbb{R}^d$

1 :

Want:

 $Vol(\bigcup_i O_i)$, or some approximation

Union Volume Estimation

DNF Counting

Given DNF, approximate number of satisfying assignments.

$$(A \wedge B) \vee (A \wedge C)$$

answer: 3 satisfying assignments

Union Volume Estimation

DNF Counting

Given DNF, approximate number of satisfying assignments.

$$(A \wedge B) \vee (A \wedge C)$$

answer: 3 satisfying assignments

Network Reliability

Given a graph G and an edge failure probability p, what is the probability that G gets disconnected?

Union Volume Estimation

DNF Counting

Given DNF, approximate number of satisfying assignments.

$$(A \wedge B) \vee (A \wedge C)$$

answer: 3 satisfying assignments

Network Reliability

Given a graph G and an edge failure probability p, what is the probability that G gets disconnected?

Klee's Measure Problem

Union Volume Estimation

DNF Counting

Given DNF, approximate number of satisfying assignments.

$$(A \wedge B) \vee (A \wedge C)$$

answer: 3 satisfying assignments

Network Reliability

Given a graph G and an edge failure probability p, what is the probability that G gets disconnected?

Klee's Measure Problem

Klee's Measure Problem

Polygon Containement

What is the largest scaling such that one rectilinear polygon can be translated into another one?

Union Volume Estimation

DNF Counting

Given DNF, approximate number of satisfying assignments.

$$(A \wedge B) \vee (A \wedge C)$$

answer: 3 satisfying assignments

Network Reliability

Given a graph G and an edge failure probability p, what is the probability that G gets disconnected?

Klee's Measure Problem

Klee's Measure Problem

Polygon Containement

What is the largest scaling such that one rectilinear polygon can be translated into another one?

Continuous Graph *k*-Center

Given a graph G, find k centers (potentially also on the edges) such that each vertex is in distance r to some center.

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

approximate:

• $O(n/\varepsilon^2)$ [Karp, Luby, Madras '89], [Bringmann, Friedrich '10]

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

approximate:

• $O(n/\varepsilon^2)$ [Karp, Luby, Madras '89], [Bringmann, Friedrich '10]

Big Questions:

1) Can $O(n/\varepsilon^2)$ be improved for Union Volume Estimation?

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

approximate:

• $O(n/\varepsilon^2)$ [Karp, Luby, Madras '89], [Bringmann, Friedrich '10]

Big Questions:

1) Can $O(n/\varepsilon^2)$ be improved for Union Volume Estimation? NO!

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

approximate:

• $O(n/\varepsilon^2)$ [Karp, Luby, Madras '89], [Bringmann, Friedrich '10]

Big Questions:

- 1) Can $O(n/\varepsilon^2)$ be improved for Union Volume Estimation? NO!
- 2) Algorithm for Klee's Measure Problem faster than $O(n/\varepsilon^2)$?

Union Volume Estimation

- Initial work [Luby '84]
- Introduced model [Karp, Luby '85]
- $O(n/\varepsilon^2)$ algorithm [Karp, Luby, Madras '89]

Klee's Measure Problem

exact:

- $O(n^{d/2})$ [Chan '13]
- $\tilde{\Omega}(n^{d/2})$ (combinatorial) [Chan '10]

approximate:

• $O(n/\varepsilon^2)$ [Karp, Luby, Madras '89], [Bringmann, Friedrich '10]

Big Questions:

- 1) Can $O(n/\varepsilon^2)$ be improved for Union Volume Estimation? NO!
- 2) Algorithm for Klee's Measure Problem faster than $O(n/\varepsilon^2)$? YES!

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Klee's Measure Problem

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Klee's Measure Problem

- must exploit geometry!
- hides $\log^d n$ factors

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Klee's Measure Problem

- must exploit geometry!
- hides $\log^d n$ factors

	$n/arepsilon^2$	$n + \frac{1}{\varepsilon^2}$
$\varepsilon = \frac{1}{\sqrt{n}}$		
$\varepsilon = 0.001$ $n = 10^6$		

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Klee's Measure Problem

- must exploit geometry!
- hides $\log^d n$ factors

	$n/arepsilon^2$	$n + \frac{1}{\varepsilon^2}$
$\varepsilon = \frac{1}{\sqrt{n}}$	n^2	n
$\varepsilon = 0.001$ $n = 10^6$		

Union Volume Estimation

"requires $\Omega(n/arepsilon^2)$ time"

- Previously known: $\Omega(n + \frac{1}{\varepsilon^2})$
- Reduction from Gap-Hamming Problem

Klee's Measure Problem

- must exploit geometry!
- hides $\log^d n$ factors

	$n/arepsilon^2$	$n + \frac{1}{\varepsilon^2}$
$\varepsilon = \frac{1}{\sqrt{n}}$	n^2	n
$\varepsilon = 0.001$ $n = 10^6$	$\sim 10^{12}$	$\sim 10^6$

Lower Bound for Union Volume Estimation

Given:
$$x, y \in \{-1, 1\}^T$$

$$\langle x,y \rangle \leq -\sqrt{T}$$
, or $\langle x,y \rangle \geq \sqrt{T}$

$$\langle x, y \rangle \ge \sqrt{T}$$

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$

Goal: decide whether

$$\langle x,y \rangle \leq -\sqrt{T}$$
, or

$$\langle x, y \rangle \ge \sqrt{T}$$

Theorem [Indyk, Woodruff '05]

Solving the Gap-Hamming Problem requires $\Omega(T)$ queries into x,y.

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$

Goal: decide whether

$$\langle x,y \rangle \leq -\sqrt{T}$$
, or

$$\langle x, y \rangle \ge \sqrt{T}$$

Theorem [Indyk, Woodruff '05]

Solving the Gap-Hamming Problem requires $\Omega(T)$ queries into x,y.

>

Theorem [our work]

Union Volume Estimation requires $\Omega(n/\varepsilon^2)$ queries.

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether
$$\langle x, y \rangle \leq -\sqrt{T}, \text{ or } \langle x, y \rangle \geq \sqrt{T}$$

Warm up: $\Omega(\frac{1}{\epsilon^2})$ lower bound

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether
$$\langle x,y\rangle\leq -\sqrt{T}, \text{ or } \langle x,y\rangle\geq \sqrt{T}$$

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

Reduction:

coordinate

1 2 3 4 5

value

1

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

Warm up: $\Omega(\frac{1}{\epsilon^2})$ lower bound

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

Reduction:

coordinate

value

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether
$$\langle x,y\rangle\leq -\sqrt{T} \text{, or } \langle x,y\rangle\geq \sqrt{T}$$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Reduction:

coordinate

1	2	3	4	5

value

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Given a $(1 + \varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot \text{Vol}(\square \cup \square)$$

Reduction:

coordinate

1 2 3 4 5

value

-1

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Given a $(1+\varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot \text{Vol}(\square \cup \square)$$

Reduction:

coordinate

1	2	3	4	5

value

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether
$$\langle x, y \rangle \leq -\sqrt{T}, \text{ or } \langle x, y \rangle \geq \sqrt{T}$$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Given a $(1+\varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot \text{Vol}(\square \cup \square)$$

 \implies approximates $\langle x, y \rangle$ within $\pm \varepsilon T$

Reduction:

coordinate

1 2 3 4 5

value

-1

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Given a $(1+\varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot (\text{Vol}(\square \cup \square))$$

 \implies approximates $\langle x,y \rangle$ within $\pm \varepsilon T$

Reduction:

coordinate

1 2 3 4 5

value

-1

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have: $\langle x, y \rangle = 3T - 2 \cdot \text{Vol}(\square \cup \square)$

Given a $(1+\varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot \text{Vol}(\square \cup \square)$$

 \implies approximates $\langle x,y \rangle$ within $\pm \varepsilon T =$

Reduction:

coordinate

	1	2	3	4	5
1					

value

Warm up: $\Omega(\frac{1}{\varepsilon^2})$ lower bound

Gap-Hamming Problem

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether
$$\langle x,y\rangle\leq -\sqrt{T}, \text{ or } \langle x,y\rangle\geq \sqrt{T}$$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

We have:
$$\langle x, y \rangle = 3T - 2 \cdot \operatorname{Vol}(\square \cup \square)$$

Given a $(1+\varepsilon)$ -approximation:

$$\langle x, y \rangle = 3T - 2(1 \pm \varepsilon) \cdot (\text{Vol}(\square \cup \square))$$

 \implies approximates $\langle x,y \rangle$ within $\pm \varepsilon T = \pm \sqrt{T}$

 \implies we need $\Omega(T) = \Omega(\frac{1}{\varepsilon^2})$ queries!

Reduction:

coordinate

1	2	3	4	5

value

 $\Omega(n/arepsilon^2)$ lower bound

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether
$$\langle x, y \rangle \leq -\sqrt{T}, \text{ or } \\ \langle x, y \rangle \geq \sqrt{T}$$

 $\Omega(n/\varepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Given:
$$x,y \in \{-1,1\}^T$$
 Goal: decide whether
$$\langle x,y \rangle \leq -\sqrt{T} \text{, or } \langle x,y \rangle \geq \sqrt{T}$$

 $\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x, y \in \{-1, 1\}^T$$
 Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle \geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y \in \{-1,1\}^T$$
 Goal: decide whether $\langle x,y \rangle \leq -\sqrt{T}$, or $\langle x,y \rangle \geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Input:
$$x = (1 , -1, 1 , 1 , -1)$$

$$y = (1 , 1 , -1, -1, -1)$$

Given:
$$x,y\in\{-1,1\}^T$$
 Goal: decide whether $\langle x,y\rangle\leq -\sqrt{T}$, or $\langle x,y\rangle\geq \sqrt{T}$

$\Omega(n/\varepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Given: $x, y \in \{-1, 1\}^T$ Goal: decide whether $\langle x, y \rangle \leq -\sqrt{T}$, or $\langle x, y \rangle > \sqrt{T}$

Gap-Hamming Problem

Input: x = (1, -1, 1, 1, -1)

$$y = (1, 1, -1, -1, -1)$$

$$P(\text{sample a coordinate point}) = \frac{1}{n}$$

$$P(\text{containment check succeeds}) = \frac{1}{n}$$

one piece

$\Omega(n/arepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Gap-Hamming Problem

Given: $x, y \in \{-1, 1\}^T$ Goal: decide whether

$$\langle x, y \rangle \leq -\sqrt{T}$$
, or $\langle x, y \rangle > \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

 $P(\text{sample a coordinate point}) = \frac{1}{n}$ $P(\text{containment check succeeds}) = \frac{1}{n}$

 $\longrightarrow O(n)$ queries for checking single bit

one piece

$\Omega(n/\varepsilon^2)$ lower bound

Idea: "hide coordindates" using random permutations

Given: $x, y \in \{-1, 1\}^T$ Goal: decide whether

Gap-Hamming Problem

$$\langle x, y \rangle \leq -\sqrt{T}$$
, or $\langle x, y \rangle \geq \sqrt{T}$

$\langle x, y \rangle \geq \sqrt{T}$

Input:

$$x = (1, -1, 1, 1, -1)$$

$$y = (1, 1, -1, -1, -1)$$

$P(\text{sample a coordinate point}) = \frac{1}{n}$ $P(\text{containment check succeeds}) = \frac{1}{n}$

 $\longrightarrow O(n)$ queries for checking single bit $\longrightarrow \Omega(n \cdot \frac{1}{\varepsilon^2})$ lower bound

one piece

Restrictions

Restrictions

can:

- use 3 queries of the model (volume, sample, contains)
- inspect coordinates of sampled points
- query arbitrary (not sampled!) points

Restrictions

can:

- use 3 queries of the model (volume, sample, contains)
- inspect coordinates of sampled points
- query arbitrary (not sampled!) points

[Karp, Luby, Madras '89] only uses this!

Restrictions

can:

- use 3 queries of the model (volume, sample, contains)
- inspect coordinates of sampled points
- query arbitrary (not sampled!) points

cannot:

inspect coordinates of objects

[Karp, Luby, Madras '89] only uses this!

Improved Upper Bound for Klee's Measure Problem

Insight from Lower Bound:

Have to use geometry of objects!

Reminder:

Reminder:

Klee's Measure Problem Given:

Goal:

$$(1+\varepsilon)$$
-approximate $\operatorname{Vol}(\bigcup_i O_i)$

Algorithm:

$$\tilde{V} \leftarrow O(1)$$
-approx. of $\operatorname{Vol}(\bigcup_i O_i)$

$$S \leftarrow p\text{-Sample}$$
 with density $p \approx \frac{1}{\tilde{V}\varepsilon^2}$

return
$$|S|/p$$

Reminder:

Algorithm:

$$\tilde{V} \leftarrow O(1)$$
-approx. of $\operatorname{Vol}(\bigcup_i O_i)$
$$S \leftarrow p$$
-Sample with density $p \approx \frac{1}{\tilde{V}\varepsilon^2}$

return
$$|S|/p$$

Reminder:

Algorithm:

$$ilde{V} \leftarrow O(1)$$
-approx. of $\mathrm{Vol}(\bigcup_i O_i)$
$$S \leftarrow p\text{-Sample with density } p \approx \frac{1}{\tilde{V}\varepsilon^2}$$
 return $|S|/p$

 $(1+\varepsilon)$ -approximation with good probability

Reminder:

Klee's Measure Problem

Given:

Boxes $O_1, \ldots, O_n \subset \mathbb{R}^d$

Goal:

 $(1+\varepsilon)$ -approximate $\operatorname{Vol}(\bigcup_i O_i)$

Algorithm:

$$\tilde{V} \leftarrow O(1)$$
-approx. of $\operatorname{Vol}(\bigcup_i O_i)$

$$S \leftarrow p\text{-Sample}$$
 with density $p \approx \frac{1}{\tilde{V}\varepsilon^2}$

return
$$|S|/p$$

 $(1+\varepsilon)$ -approximation with good probability

Goal:

Draw *p*-Sample from union of boxes.

p-Sample: Similar Shapes

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

build orthogonal range data structure

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

build orthogonal range data structure create grid, mark active cells $G_1, \ldots G_T$

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

build orthogonal range data structure create grid, mark active cells $G_1, \ldots G_T$

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

build orthogonal range data structure create grid, mark active cells $G_1, \ldots G_T$ $K \sim \mathsf{Pois}(p \cdot \mathsf{Volume}(\bigcup_i G_i))$

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Algorithm:

build orthogonal range data structure create grid, mark active cells $G_1, \ldots G_T$ $K \sim \operatorname{Pois}(p \cdot \operatorname{Volume}(\bigcup_i G_i))$ for $i \in [K]$ $G \leftarrow \operatorname{random}$ cell $q \leftarrow \operatorname{random}$ point from G if q contained in box: add q to samples return samples

Correctness?

p-Sample: Similar Shapes

Class: All boxes have sizes in

$$[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d].$$

Running Time?

$$O((n+K) \cdot \log^{O(d)} n)$$

Algorithm:

build orthogonal range data structure create grid, mark active cells $G_1, \ldots G_T$ $K \sim \operatorname{Pois}(p \cdot \operatorname{Volume}(\bigcup_i G_i))$ for $i \in [K]$ $G \leftarrow \operatorname{random}$ cell $q \leftarrow \operatorname{random}$ point from G if q contained in box: add q to samples return samples

Correctness?

 $p ext{-Sample: General Case}$

p-Sample: General Case

Algorithm:

build orthogonal range data structure

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

build orthogonal range data structure partition input into classes C_1, \ldots, C_m

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

output
$$\sum_{t=1}^{m} |S_t|/p$$

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

build orthogonal range data structure partition input into classes C_1, \ldots, C_m for each $i \in [m]$:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

output
$$\sum_{t=1}^{m} |S_t|/p$$

Correctness?

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

build orthogonal range data structure partition input into classes C_1, \ldots, C_m for each $i \in [m]$:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

output
$$\sum_{t=1}^{m} |S_t|/p$$

Correctness?

Running Time?

Class: All boxes have sizes in $[s_1, 2s_1] \times [s_2, 2s_2] \times \cdots \times [s_d, 2s_d]$.

p-Sample: General Case

Algorithm:

build orthogonal range data structure partition input into classes C_1, \ldots, C_m for each $i \in [m]$:

$$S_i \leftarrow p$$
-Sample from C_i

$$S_i \leftarrow S_i \setminus (C_{i+1} \cup \cdots \cup C_m)$$

output
$$\sum_{t=1}^{m} |S_t|/p$$

Correctness?

Running Time?

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If C_i, C_j are dis-similar, then

$$\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{n}$$
.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Proof: Let $C_j \ni q$, with $Vol(C_j)$ maximal.

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If
$$C_i, C_j$$
 are dis-similar, then
$$Vol(C_i \cup C_i)$$

$$\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{n}$$
.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Proof: Let $C_j \ni q$, with $Vol(C_j)$ maximal.

#similar classes containing q: $\log^{O(d)} n$

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If C_i, C_j are dis-similar, then

$$\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{n}$$
.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Proof: Let $C_j \ni q$, with $Vol(C_j)$ maximal.

#similar classes containing q: $\log^{O(d)} n$ #dissimilar classes containing q: O(1)

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If C_i, C_j are dis-similar, then $\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{r}$.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Proof: Let $C_j \ni q$, with $Vol(C_j)$ maximal.

#similar classes containing q: $\log^{O(d)} n$

#dissimilar classes containing q: O(1)

Running Time?

$$O((n+|S|)\log^{O(d)}n)$$

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If C_i, C_j are dis-similar, then

$$\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{n}$$
.

p-Sample: General Case

Lemma

A random $q \in \bigcup_i C_i$ is contained in at most $\log^{O(d)} n$ classes in expectation.

Proof: Let $C_j \ni q$, with $Vol(C_j)$ maximal.

#similar classes containing q: $\log^{O(d)} n$

#dissimilar classes containing q: O(1)

Running Time?

$$O((n + S) \log^{O(d)} n)$$

Definition:

Classes C_i, C_j are **similar** if all side lengths are within a factor n^3 .

Observations:

Each class C_i is similar to at most $\log^{O(d)} n$ other classes.

If C_i, C_j are dis-similar, then

$$\operatorname{Vol}(C_i \cap C_j) \leq \frac{\operatorname{Vol}(C_i \cup C_j)}{n}$$
.

Conclusion

"requires $\Omega(n/arepsilon^2)$ time"

Union Volume Estimation & Klee's Measure Problem

"requires $\Omega(n/arepsilon^2)$ time"

Klee's Measure Problem

"can be solved in $\tilde{O}(n+\frac{1}{\varepsilon^2})$ time"

Union Volume Estimation & Klee's Measure Problem

Union Volume Estimation

"requires $\Omega(n/\varepsilon^2)$ time"

Klee's Measure Problem

"can be solved in $ilde{O}(n+\frac{1}{arepsilon^2})$ time"

Questions?

Union Volume Estimation & Klee's Measure Problem