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Given: Given:
Objects O4,...,0,, with access: Boxes O1,...,0,, C R¢

1) Volume(s

2) Sample() %
Want:
Y

11
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Motivation

Union Volume Estimation Klee's Measure Problem
DNF Counting Polygon Containement
Given DNF, approximate number of What is the largest scaling such
satisfying assignments. that one rectilinear polygon can be
(AAB)V (AAC) translated into another one?

answer: 3 satisfying assignments

Continuous Graph k-Center

Network Reliability Given a graph G, find k centers
Given a graph G and an edge failure (potentially also on the edges)
probability p, what is the probability that such that each vertex is in
(G gets disconnected? distance r to some center.

Klee’s Measure Problem
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1) Can O(n/e?) be improved for Union Volume Estimation? NO!
2) Algorithm for Klee's Measure Problem faster than O(n/e%)?  YES!
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Our Results

Union Volume Estimation Klee’s Measure Problem
“requires 2(n/e?) time” “can be solved in O(n + s%) time”
e Previously known: Q(n + =) e must exploit geometry!
e Reduction from Gap-Hamming Problem e hides log”n factors
n/e? n+ %

£ = \/Lﬁ 2 n

e = 0.001 -~ 1012 -~ 106

n = 10°
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™M




Gap-Hamming Problem

Lower Bound Givenw.y € {—1, 137
5 Goal: decide whether
Q(n/e“) lower bound (z,y) < —VT, or

(x,y) > VT




Gap-Hamming Problem

Lower Bound Givenw.y € {—1, 137
5 Goal: decide whether
Q(n/e°) lower bound (z,y) < —VT, or

(x,y) > VT

Idea: “hide coordindates” using random permutations




Lower Bound

Q(n/e?) lower bound

Idea: “hide coordindates” using random permutations

Input:

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether
<33’ y> S —ﬁ, or
(z,y) > VT




Lower Bound

Q(n/e?) lower bound

Idea: “hide coordindates” using random permutations

Input:

coordinate
2 3

L]

4

Reduction:
1
value
-1

“ \ one piece

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether
<33’ y> S —ﬁ, or
(z,y) > VT




Gap-Hamming Problem
Lower Bound Given:z, y € {1,137
Goal: decide whether
Q(n/e?) lower bound (z,y) < —/T, or
. . . . (z,y) > VT
Idea: “hide coordindates” using random permutations

Input:

Reduction: _
coordinate

value

. IJ U \ one piece




Gap-Hamming Problem
Lower Bound Given:z, y € {1,137
Goal: decide whether
Q(n/e?) lower bound (z,y) < —/T, or
. . . . (z,y) > VT
Idea: “hide coordindates” using random permutations

Input:

Reduction: _
coordinate

1 2

1| il
. U \ one piece

value




Lower Bound

Q(n/e?) lower bound

Idea: “hide coordindates” using random permutations

Input:

Reduction: _
coordinate
1 2 3 5
1 ]
value 7
1 “

“ \ one piece

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether
<33’ y> S —ﬁ, or
(z,y) > VT




Gap-Hamming Problem
Lower Bound Given:z, y € {1,137
Goal: decide whether
Q(n/e?) lower bound (z,y) < —/T, or
. . . . (z,y) > VT
Idea: “hide coordindates” using random permutations

Input:

Reduction: _
coordinate

1
b U “ \onepiece

5

value




Lower Bound

Q(n/e?) lower bound

Idea: “hide coordindates” using random permutations

Input:
Reduction: _
coordinate
1 2 3 4 5
1
value //
-1

\ one piece

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether
(CB, y> S —ﬁ, or
(z,y) > VT




Gap-Hamming Problem
Lower Bound Given'z, y € {—1,1}7T
Goal: decide whether
Q(n/e?) lower bound (z,y) < —VT, or
! : - . <SU, y> 2 ﬁ
Idea: “hide coordindates” using random permutations
Input:
Reduction:

coordinate

1 2 3 4 5
1
value /

1
\ one piece




Lower Bound

Q(n/e?) lower bound

Idea: “hide coordindates” using random permutations

Input:
Reduction:

coordinate

4

\ one piece

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether
(CB, y> S —ﬁ, or
(z,y) > VT




Gap-Hamming Problem
Lower Bound Given'z, y € {—1,1}7T
Goal: decide whether
Q(n/e?) lower bound (z,y) < —VT, or
! : - . <SU, y> 2 ﬁ
Idea: “hide coordindates” using random permutations
Input:
Reduction:

coordinate
5

\ one piece




Gap-Hamming Problem
Lower Bound Given'z, y € {—1,1}7T
Goal: decide whether
Q(n/e?) lower bound (z,y) < —VT, or
! : - . <SU, y> 2 ﬁ
Idea: “hide coordindates” using random permutations
Input:
Reduction:

coordinate
5

-1

one piece




Gap-Hamming Problem
Lower Bound Gven'z.y € {—1,1}7T
5 Goal: decide whether
Q(n/e°) lower bound (z,y) < =T, or
(z,y) > VT

Idea: “hide coordindates” using random permutations

Input:
P(sample a coordinate point) =

P(containment check succeeds)

I

1
n

Reduction: _
coordinate

5

-1

one piece




Gap-Hamming Problem
Lower Bound Gven'z.y € {—1,1}7T
5 Goal: decide whether
Q(n/e°) lower bound (z,y) < =T, or
(z,y) > VT

Idea: “hide coordindates” using random permutations

Input:

. . ﬁ
P(sample a coordinate point) =

P(containment check succeeds)

I

1
n

J
L5 O(n) queries for checking single bit

Reduction: _
coordinate

5

-1

one piece




Lower Bound

Q(n/e?) lower bound

Gap-Hamming Problem

Given:x,y € {—1, 1}T
Goal: decide whether

<33,’y> S —ﬁ, or
(z,y) > VT

Idea: “hide coordindates” using random permutations
Input:
— (1 ~1,1 ,1 ~1)
- . . M
y= (1,1 -1-1-1) P(sample a coordinate point) =
P(containment check succeeds) = %
J

reduction Ls o queries for checking single bit

coordinate
5

|

L5 Qn

one piece

Iower bound



Lower Bound

Restrictions

Union Volume Estimation
André Nusser & Klee's Measure Problem



Lower Bound

Restrictions

Union Volume Estimation
André Nusser & Klee's Measure Problem



Lower Bound

Restrictions

[Karp, Luby, Madras "89] only uses this!

Union Volume Estimation
André Nusser & Klee's Measure Problem



Lower Bound

Restrictions

[Karp, Luby, Madras "89] only uses this!

Union Volume Estimation
André Nusser & Klee's Measure Problem



Improved Upper Bound
for
Klee’s Measure Problem



Upper Bound

Insight from Lower Bound:
Have to use geometry of objects!



Upper Bound

Reminder:

Klee’s Measure Problem

Given:
Boxes O,...,0, C R?

11

Goal:
(1 + ¢)-approximate Vol(lJ, O;)

o




Reminder:

Upper Bound

Given:

Boxes O, ..

Klee’s Measure Problem

.,0, C R?

Goal:

(1 + g)-approximate Vol(Ui Oi)

o

11

Algorithm:
V «— O(1)-approx. of Vol(lJ. O;)

S < p-Sample with density p ~ ‘7182

return |S|/p




Reminder:

Upper Bound

Given:

Boxes Oq, ..

Klee’s Measure Problem

.,0,, C R4

Goal:

(1 + ¢)-approximate Vol(lJ, O;)

o

11

Algorithm:
V «— O(1)-approx. of Vol(lJ. O;)

5 With density p ~ ‘7182

return |S|/p




Reminder:

Upper Bound

Given:

Boxes O+, ..

Klee’s Measure Problem

.,0,, C R4

Goal:

(1 + ¢)-approximate Vol(lJ, O;)

o

11

Algorithm:
V «— O(1)-approx. of Vol(lJ. O;)

S < p-Sample with density p ~ =

Ve?
return |S|/p \
N\

(1 + €)-approximation with good probability




Reminder:

Upper Bound

Given:

Boxes O+, ..

Klee’s Measure Problem

.,0,, C R4

Goal:
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o

11

Algorithm:
V — 0(1)-approx. of Vol(Ui Oi)
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return |S|/p \
N\

(1 + €)-approximation with good probability

Goal:
Draw p-Sample from union of boxes.
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Upper Bound

p-Sample: General Case

A random g € | J, C; is contained in at most

logO(d)

Lemma

n classes in expectation.




Upper Bound

p-Sample: General Case

Definition:
Lemma
A random q € UZ (C; 1s contained in at most Classes C;, C; are similar if all side




Upper Bound

p-Sample: General Case

A random g € | J, C; is contained in at most

log

O(d)

Lemma

n classes in expectation.

Definition:

Classes C;, C; are similar if all side

lengths are within a factor n°.

Observations:

Each class C; is similar to at most
logo(d> n other classes.




Upper Bound

p-Sample: General Case

Definition:
Lemma
A random q € Uz (C; 1s contained in at most Classes C;, C; are similar if all side

Observations:

Each class C; is similar to at most
logo(d> n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)




Upper Bound

p-Sample: General Case

Definition:
Lemma
A random q € UZ (C; 1s contained in at most Classes C;, C; are similar if all side
logO(d) n classes in expectation. lengths are within a factor ns.
Proof: Let C; 5 g, with Vol(C;) maximal. Observations:

Each class C; is similar to at most
logo(d) n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)




Upper Bound

p-Sample: General Case

Definition:
Lemma
A random q € UZ (C; 1s contained in at most Classes C;, C; are similar if all side
Proof: Let C; 5 g, with Vol(C;) maximal. Observations:
#similar classes containing q: log® @ n Each class C; is similar to at most
logo(d) n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)




Upper Bound

p-Sample: General Case

Definition:
Lemma

A random q € Uz (C; 1s contained in at most Classes C;, C; are similar if all side

logO(d) n classes in expectation_ Iengths are within a factor n3.
Proof: Let C; 5 g, with Vol(C;) maximal. Observations:
#similar classes containing q: log® @ n Each class C; is similar to at most

.. . o(d

#dissimilar classes containing ¢:  O(1) log?¥ n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)




Upper Bound

p-Sample: General Case

Definition:
Lemma

A random q € Uz (C; 1s contained in at most Classes C;, C; are similar if all side

logO(d) n classes in expectation_ Iengths are within a factor n3.
Proof: Let C; 5 g, with Vol(C;) maximal. Observations:
#similar classes containing q: log® @ n Each class C; is similar to at most

.. . O(d

#dissimilar classes containing ¢:  O(1) log?¥ n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)

Running Time?

O((n +|S|) log®® n)




Upper Bound

p-Sample: General Case

Definition:
Lemma

A random q € Uz (C; 1s contained in at most Classes C;, C; are similar if all side

logO(d) n classes in expectation_ Iengths are within a factor n3.
Proof: Let C; 5 g, with Vol(C;) maximal. Observations:
#similar classes containing q: log® @ n Each class C; is similar to at most

.. . O(d

#dissimilar classes containing ¢:  O(1) log?¥ n other classes.

If C;,C; are dis-similar, then

Vol(C; N C;) < YGily)

Running Time?

O((n + @‘)\) log® @ n)
\1/82




André Nusser

Conclusion S

Union Volume Estimation

“requires 2(n/e?) time” @

Union Volume Estimation
/// & Klee's Measure Problem



Z

AU EHE

André Nusser

Conclusion

Union Volume Estimation

“requires 2(n/e?) time”

Klee’s Measure Problem

“can be solved in O(n + %) time”

Union Volume Estimation
& Klee's Measure Problem



AU EHE

Z

Conclusion

Union Volume Estimation

“requires 2(n/e?) time”

Klee’s Measure Problem

“can be solved in O(n + %) time”

Questions?

] | ]




