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Sphere packings

A sphere packing (or circle packing in 2D) is a collection of spheres with pairwise
disjoint interiors in Euclidean space
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Sphere packings and medical imaging

Figure from Hurdal and Stephenson,“Cortical cartography using the discrete conformal
approach of circle packings”, NeuroImage (2004)
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Sphere packings and physics of soft materials

Figure from Lu et al. Three-Dimensional Discrete Element Analysis of Crushing
Characteristics of Calcareous Sand Particles, Geofluids (2022)
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Sphere packings in geometric modelling

Figures from Schiftner, Höbinger, Wallner and Pottmann, Packing circles and spheres
on surfaces, ACM SIGGRAPH conference proceedings (2009)
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Sphere packings in geometric modelling

Figure from R. Weller and G. Zachmann, ProtoSphere: A GPU-Assisted Prototype
Guided Sphere Packing Algorithm for Arbitrary Objects, ACM SIGGRAPH ASIA 2010

conference proceedings
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The geometry of sphere packings

Sd

R̂d

An (oriented) sphere is the image of a spherical cap in Sd under stereographic
projection
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The geometry of sphere packings

Depending on the relative position between the cap and the North Pole, there are three
types of spheres

Solid sphere Half-space Hollow sphere
(r > 0) (r = ∞) (r < 0)
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The geometry of sphere packings

A sphere packing is dense if it fills almost of all the space
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The geometry of sphere packings

Reflection groups allow us to generate infinite packings
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The geometry of sphere packings

Inversion: reflection on a spherical mirror
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The geometry of sphere packings

Inversion

▶ Preserves angles, changes volume

▶ Reflects sphere packings to sphere packings

▶ Fixes spheres orthogonal to the mirror

▶ Parallel mirrors generate infinite inversions
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Conformal transformations

f

Conformal transformations, or Möbius transformations,
are maps R̂d → R̂d that locally preserve angles
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The geometry of sphere packings

Conformal transformation
(composition of inversions)

▶ Preserves angles, change volume

▶ Reflects sphere packings to sphere packings

▶ Useful for constructing dense sphere packings
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S = {s1, s2, s3, s4}
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Dual circle s∗i : circle orthogonal to a triple {sj , sk , sl} ⊂ S
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⟨s∗1 ⟩ · S
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⟨s∗1 ⟩ · S
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⟨s∗1 , s∗2 ⟩ · S
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⟨s∗1 , s∗2 , s∗3 ⟩ · S
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⟨s∗1 , s∗2 , s∗3 , s∗4 ⟩ · S
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The Apollonian Circle Packing
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Polytopes

A d-polytope is the convex hull of n ≥ d + 1 points of Rd in general position.

3-polytope2-polytope 4-polytope

(Schlegel projection)
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Regular polytopes

A flag of d-polytope P is a sequence of k-dimensional faces (f0, f1, . . . , fd−1, fd = P)
such that fk ⊂ fk+1.

abcde

a

a

b

bd de e

c

c

abc abd ace ade bcde

ab ac ad ae bc bd ce de

Ø

A polytope is regular if its symmetry group acts transitively on its flags.
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The regular polytopes in every dimension

d = 2 · · ·

d = 3
Platonic
solids

Tetrahedron Octahedron Cube Icosahedron Dodecahedron

d = 4

Hypertetrahedron Hyperoctahedron Hypercube Hypericosahedron Hyperdodecahedron 24-cell

d ≥ 5 d-Hypertetrahedron d-Hyperoctahedron d-Hypercube
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Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere Sd

If in addition, the barycenter of E(P) ∩ Sd is the origin, then P is canonical

Edge-scribable Edge-scribed Canonical

▶ (Brightwell-Scheinerman ’93) Every 3-polytope is edge-scribable

▶ There are non edge-scribable d-polytopes for every d ≥ 4
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▶ (Brightwell-Scheinerman ’93) Every 3-polytope is edge-scribable

▶ There are non edge-scribable d-polytopes for every d ≥ 4

▶ (Springborn ’05) For every d ≥ 2, every edge-scribed (d + 1)-polytope can be
transformed into canonical by a conformal transformation of Sd

▶ (Springborn ’05) Canonical realizations are unique up to Euclidean isometries
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Figure of A. Baden, K. Crane, and M. Kazhdan, Möbius Registration,
Eurographics Symposium on Geometry Processing (2018)
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Polytopal sphere packings

Arrangement projection β : {(d + 1)-polytopes} → {d-sphere arrangements in R̂d}

1. Take a polytope P ⊂ Rd+1 whose vertices are in ext(Sd)
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Polytopal sphere packings

Vertices of P

Edges of P

Spheres of SP

Tangency relations of SP
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Vertices of P

Edges of P

Spheres of SP

Tangency relations of SP
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Polytopal sphere packings

Vertices of P

Edges of P

Facets of P

Spheres of SP

Tangency relations of SP

Dual spheres of SP
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Polytopal sphere packings

In dimension 2, the union of the infinite reflections of SP
through its dual spheres is a dense packing
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Polytopal sphere packings

Not always true in higher dimensions!
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Polytopal sphere packings

Hypercube

Not always true in higher dimensions!
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Polytopal sphere packings

Hypercube

Not always true in higher dimensions!
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Polytopal sphere packings

Hypercube Hypercubic dense packing

Not always true in higher dimensions!
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Polytopal sphere packings

Hypericosahedron

Not always true in higher dimensions!
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Polytopal sphere packings

Hypericosahedron Not a packing: the spheres overlap

Not always true in higher dimensions!
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The crystallographic regular polytopes

A polytope P is crystallographic if the union of the infinite inversions of SP
through its dual spheres is a packing.

Finitiness theorem (Bogachev, Kolpakov, Kontorovich ’23)
Crystallographic polytopes exist only in dimensions 3 ≤ d ≤ 19.

Theorem (R. ’24) There are only 11 crystallographic regular polytopes.

d = 3

Tetrahedron Octahedron Cube Icosahedron Dodecahedron

d = 4

Hypertetrahedron Hyperoctahedron Hypercube 24-cell Hyperdodecahedron

d = 6 6-Hyperoctahedron
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Sphere packings and deformations of tubular surfaces
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Sphere packings and deformations of tubular surfaces
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Sphere packings containing a given knot

→

Algorithm 1 Raḿırez Alfonśın-R., Ball packings for links,
European Journal of Combinatorics (2021)

Algorithm 2 Raḿırez Alfonśın-R., Links in orthoplicial Apollonian packings,
European Journal of Combinatorics (2024)
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Algorithm 1

→

n crossings 5n spheres
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Algorithm 1

25/35



Application in geometric knot theory

cr(L) := min#{crossings among all diagrams of L}

ball(L) := min#{spheres in a packing containing L}

40 spheres 24 spheres 12 spheres

Theorem (Raḿırez-R. 21’) ball(L) ≤ 5cr(L)
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Application in geometric knot theory

Theorem (Raḿırez-R. ’21) For any non-trivial and non-splittable link L

ball(L) ≤ 5cr(L)

Conjecture (Raḿırez-R. ’21) For any alternating link L

ball(L) = 4cr(L)

?−→
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ball(L) ≤ 5cr(L)

Conjecture (Raḿırez-R. ’21) For any alternating link L

ball(L) = 4cr(L)

Theorem (Raḿırez-R. ’23) For any rational link L

ball(L) ≤ 4cr(L)
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Application in geometric knot theory

Hypertetrahedron Hyperoctahedron Hypercube
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Application in geometric knot theory

Theorem (Raḿırez-R. 23’) Every link admits a necklace representation in the five 3D
regular crystallographic packings

Hypertetrahedron Hyperoctahedron Hypercube

24-cell Hyperdodecahedron 28/35



Application in geometric knot theory

Theorem (Raḿırez-R. 21’) ball(L) ≤ 5cr(L)

cr(L) = 4

20 spheres

29/35



Application in geometric knot theory
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Application in geometric knot theory

Theorem (Raḿırez-R. 21’) ball(L) ≤ 5cr(L)

Theorem (Raḿırez-R. 24’) For any rational link L, ball(L) ≤ 4cr(L)

cr(L) = 4
L rational

20 spheres 16 spheres contained in the
hyperoctahedral packing

29/35
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Lacunary structures
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Lacunary structures

From Sokolov, Gouaty, Gentil, Mishkinis, Boundary Controlled Iterated Function
System, Curves and Surfaces (2015), Lecture Notes in Computer Science
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Lacunary structures

Polytopal sphere packings can be construct with the BC-IFS model.
The incidency and adjacency conditions can be expressed in terms of the combinatoric

structure of the polytope
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Lacunary structures
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Lacunary structures

Complementary of a Polytopal Circle Packing based on a tetrahedron
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Lacunary structures

Canonical Apollonian subdivision
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Lacunary structures

Canonical Apollonian subdivision
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Lacunary structures

Canonical Barycentric Subdivision

33/35



Lacunary structures

Canonical Barycentric subdivision

33/35



Lacunary structures

Canonical Barycentric subdivision

33/35



Lacunary structures

34/35



Lacunary structures

34/35



Lacunary structures

34/35



Lacunary structures
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Lacunary structures
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Lacunary structures

Figure of Gilles Gouaty

This lacunary structure can be obtained by taking the complementary of a Polytopal
Sphere Packing of a Canonical Barycentric Subdivision of a hypertetrahedron 35/35
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