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Sphere packings

A sphere packing (or circle packing in 2D) is a collection of spheres with pairwise
disjoint interiors in Euclidean space
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Sphere packings and medical imaging

Figure from Hurdal and Stephenson, “Cortical cartography using the discrete conformal
approach of circle packings”, Neurolmage (2004)
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Sphere packings and physics of soft materials

Initial particle

U

Post-crushing replacement

Figure from Lu et al. Three-Dimensional Discrete Element Analysis of Crushing
Characteristics of Calcareous Sand Particles, Geofluids (2022)
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Sphere packings in geometric modelling
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Figures from Schiftner, Hobinger, Wallner and Pottmann, Packing circles and spheres
on surfaces, ACM SIGGRAPH conference proceedings (2009)
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Sphere packings in geometric modelling

Figure from R. Weller and G. Zachmann, ProtoSphere: A GPU-Assisted Prototype
Guided Sphere Packing Algorithm for Arbitrary Objects, ACM SIGGRAPH ASIA 2010
conference proceedings
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The geometry of sphere packings

Qo

Rd

An (oriented) sphere is the image of a spherical cap in S9 under stereographic
projection
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The geometry of sphere packings

Depending on the relative position between the cap and the North Pole, there are three
types of spheres

APy ©!

Solid sphere Half-space Hollow sphere
(r>0) (r=00) (r<o0)
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The geometry of sphere packings

A sphere packing is dense if it fills almost of all the space 8/35
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The geometry of sphere packings

Reflection groups allow us to generate infinite packings
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The geometry of sphere packings

A
X
A

ALK
essee
BNy e Ty
e
)08 0000000

]
o
o
Q
=
=]
o
w ‘



The geometry of sphere packings

Inversion: reflection on a spherical mirror

10/35



The geometry of sphere packings
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» Preserves angles, changes volume
. » Reflects sphere packings to sphere packings
Inversion } .
» Fixes spheres orthogonal to the mirror
» Parallel mirrors generate infinite inversions
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The geometry of sphere packings

Inversion
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» Preserves angles, change volume
» Reflects sphere packings to sphere packings
» Fixes spheres orthogonal to the mirror

> Parallel mirrors generate infinite inversions /
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Conformal transformations

Conformal transformations, or Mdbius transformations,
are maps R — R that locally preserve angles
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The geometry of sphere packings
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13/35



The geometry of sphere packings

. » Preserves angles, change volume
Conformal transformation gles, g

(composition of inversions) » Reflects sphere packings to sphere packings

» Useful for constructing dense sphere packings
13/35



The geometry of sphere packings

» Preserves angles, change volume

Conformal transformation
(composition of inversions) » Reflects sphere packings to sphere packings

» Useful for constructing dense sphere packings
13/35



The geometry of sphere packings

» Preserves angles, change volume

Conformal transformation
(composition of inversions) » Reflects sphere packings to sphere packings

» Useful for constructing dense sphere packings
13/35



The geometry of sphere packings

. » Preserves angles, change volume
Conformal transformation gles, g

(composition of inversions) » Reflects sphere packings to sphere packings
» Useful for constructing dense sphere packings
13/35



The geometry of sphere packings
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The geometry of sphere packings

» Preserves angles, change volume

Conformal transformation
(composition of inversions) » Reflects sphere packings to sphere packings

» Useful for constructing dense sphere packings
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S = {51,52,53,54} 14/35



Dual circle s/: circle orthogonal to a triple {sj, sk, s1} C S
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The Apollonian Circle Packing
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Polytopes

A d-polytope is the convex hull of n > d + 1 points of RY in general position.

2-polytope 3-polytope 4-polytope
(Schlegel projection)
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Regular polytopes

A flag of d-polytope P is a sequence of k-dimensional faces (fo, fi, ..., fa—1,fa = P)
such that £ C fk+1.
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Regular polytopes

A flag of d-polytope P is a sequence of k-dimensional faces (fo, fi, ..., fa—1,fa = P)
such that £ C fk+1.

A polytope is regular if its symmetry group acts transitively on its flags.
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The regular polytopes in every dimension
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The regular polytopes in every dimension

Platonic
d=3 A solids
Tetrahedron Octahedron Cube Icosahedron Dodecahedron

Hypertetrahedron Hyperoctahedron Hypercube Hypericosahedron Hyperdodecahedron 24-cell
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The regular polytopes in every dimension

Platonic
Tetrahedron Octahedron Cube Icosahedron Dodecahedron
Hypertetrahedron Hyperoctahedron Hypercube Hypericosahedron Hyperdodecahedron 24-cell
d>5 d-Hypertetrahedron d-Hyperoctahedron d-Hypercube
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Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS? is the origin, then P is canonical

Edge-scribable Edge-scribed Canonical

18/35



Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS? is the origin, then P is canonical

Edge-scribable Edge-scribed Canonical
» (Brightwell-Scheinerman '93) Every 3-polytope is edge-scribable

18/35



Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS? is the origin, then P is canonical

Edge-scribable Edge-scribed Canonical

» (Brightwell-Scheinerman '93) Every 3-polytope is edge-scribable
» There are non edge-scribable d-polytopes for every d > 4

18/35



Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS? is the origin, then P is canonical

Edge-scribable Edge-scribed Canonical

» (Brightwell-Scheinerman '93) Every 3-polytope is edge-scribable
» There are non edge-scribable d-polytopes for every d > 4

18/35



Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS? is the origin, then P is canonical

conformal

map of S¢
_

Edge-scribable Edge-scribed Canonical

> (Brightwell-Scheinerman '93) Every 3-polytope is edge-scribable
» There are non edge-scribable d-polytopes for every d > 4

» (Springborn '05) For every d > 2, every edge-scribed (d 4 1)-polytope can be
transformed into canonical by a conformal transformation of S¢

18/35



Edge-scribed polytopes

A (d + 1)-polytope P is edge-scribed if every edge is tangent to the unit sphere s

If in addition, the barycenter of E(P) NS is the origin, then P is canonical

conformal

map of S¢
" _

Edge-scribable Edge-scribed Canonical
> (Brightwell-Scheinerman '93) Every 3-polytope is edge-scribable
» There are non edge-scribable d-polytopes for every d > 4

» (Springborn '05) For every d > 2, every edge-scribed (d 4 1)-polytope can be
transformed into canonical by a conformal transformation of S¢

» (Springborn '05) Canonical realizations are unique up to Euclidean isometries
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Figure of A. Baden, K. Crane, and M. Kazhdan, Mébius Registration,
Eurographics Symposium on Geometry Processing (2018)
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Polytopal sphere packings
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Polytopal sphere packings

Arrangement projection 3 : {(d + 1)-polytopes} — {d-sphere arrangements in ]1/@}

1. Take a polytope P C RY*! whose vertices are in ext(S9)

2. Place at each vertex of P a light-source illuminating S¢
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Polytopal sphere packings

Arrangement projection 3 : {(d + 1)-polytopes} — {d-sphere arrangements in ]}/@}

1. Take a polytope P C RY"* whose vertices are in ext(S?)

2. Place at each vertex of P a light-source illuminating S¢

3. Apply the stereographic projection S — RY to the illuminated regions

A sphere packing Sp is polytopal if there is an edge-scribed
polytope P such that S» = B(P), up to conformal transformations
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Polytopal sphere packings

Vertices of P Spheres of Sp

Edges of P Tangency relations of Sp
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Polytopal sphere packings

N N4
Y
Vertices of P Spheres of Sp
Edges of P Tangency relations of Sp
Facets of P Dual spheres of Sp
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Polytopal sphere packings

In dimension 2, the union of the infinite reflections of Sp
through its dual spheres is a dense packing
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Polytopal sphere packings
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Polytopal sphere packings
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Not always true in higher dimensions!
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Polytopal sphere packings

Hypertetrahedron Apollonian sphere packing
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Polytopal sphere packings

Hypercube

Not always true in higher dimensions!
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Polytopal sphere packings

Hypercube

Not always true in higher dimensions!
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Polytopal sphere packings

Hypercube Hypercubic dense packing

Not always true in higher dimensions!
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Polytopal sphere packings

Hypericosahedron

Not always true in higher dimensions!
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Polytopal sphere packings

Hypericosahedron Not a packing: the spheres overlap

Not always true in higher dimensions!
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The crystallographic regular polytopes

A polytope P is crystallographic if the union of the infinite inversions of Sp
through its dual spheres is a packing.
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A polytope P is crystallographic if the union of the infinite inversions of Sp
through its dual spheres is a packing.

Finitiness theorem (Bogachev, Kolpakov, Kontorovich '23)
Crystallographic polytopes exist only in dimensions 3 < d < 19.

Theorem (R. '24) There are only 11 crystallographic regular polytopes.

~A @ WO 0

Tetrahedron Octahedron Cube Icosahedron Dodecahedron

Hypertetrahedron Hyperoctahedron Hypercube 24-cell Hyperdodecahedron
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The crystallographic regular polytopes

A polytope P is crystallographic if the union of the infinite inversions of Sp
through its dual spheres is a packing.

Finitiness theorem (Bogachev, Kolpakov, Kontorovich '23)
Crystallographic polytopes exist only in dimensions 3 < d < 19.

Theorem (R. '24) There are only 11 crystallographic regular polytopes.

w0 O

Tetrahedron Octahedron Cube Icosahedron Dodecahedron
d=4 / \
- M—
\/_—
Hypertetrahedron Hyperoctahedron Hypercube 24-cell Hyperdodecahedron
d=6 6-Hyperoctahedron
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Sphere packings and deformations of tubular surfaces
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Sphere packings and deformations of tubular surfaces
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Sphere packings and deformations of tubular surfaces
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Sphere packings containing a given knot

Algorithm 1 Ramirez Alfonsin-R., Ball packings for links,
European Journal of Combinatorics (2021)

Algorithm 2 Ramirez Alfonsin-R., Links in orthoplicial Apollonian packings,
European Journal of Combinatorics (2024)
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Application in geometric knot theory

cr(L) := min #{crossings among all diagrams of L}

ball(L) := min #{spheres in a packing containing L}

40 spheres 24 spheres 12 spheres
Theorem (Ramirez-R. 21') ball(L) < 5cr(L)
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Application in geometric knot theory

Theorem (Ramirez-R. '21) For any non-trivial and non-splittable link L

ball(L) < 5cr(L)

27/35



Application in geometric knot theory

Theorem (Ramirez-R. '21) For any non-trivial and non-splittable link L

ball(L) < 5cr(L)

Conjecture (Ramirez-R. '21) For any alternating link L

ball(L) = 4cr(L)

27/35



Application in geometric knot theory

Theorem (Ramirez-R. '21) For any non-trivial and non-splittable link L

ball(L) < 5cr(L)

Conjecture (Ramirez-R. '21) For any alternating link L

ball(L) = 4cr(L)

BLL B

27/35



Application in geometric knot theory

Theorem (Ramirez-R. '21) For any non-trivial and non-splittable link L

ball(L) < 5cr(L)

Conjecture (Ramirez-R. '21) For any alternating link L

ball(L) = 4cr(L)

Theorem (Ramirez-R. '23) For any rational link L

ball(L) < 4cr(L)
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Application in geometric knot theory
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Application in geometric knot theory

Theorem (Ramirez-R. 23’) Every link admits a necklace representation in the five 3D
regular crystallographic packings

W

Hypertetrahedron Hyperoctahedron Hypercube

®

24-cell Hyperdodecahedron 28/35



Application in geometric knot theory

Theorem (Ramirez-R. 21') ball(L) < 5cr(L)

cr(L)r =4

20 spheres
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Application in geometric knot theory

Theorem (Ramirez-R. 21') ball(L) < 5cr(L)
Theorem (Ramirez-R. 24’) For any rational link L, ball(L) < 4cr(L)

cr(l)=4
L rational

16 spheres contained in the
hyperoctahedral packing

20 spheres
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Lacunary structures
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Lacunary structures

From Sokolov, Gouaty, Gentil, Mishkinis, Boundary Controlled Iterated Function
System, Curves and Surfaces (2015), Lecture Notes in Computer Science
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Lacunary structures

Polytopal sphere packings can be construct with the BC-IFS model.
The incidency and adjacency conditions can be expressed in terms of the combinatoric
structure of the polytope
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Lacunary structures
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Lacunary structures

Complementary of a Polytopal Circle Packing based on a tetrahedron
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Lacunary structures

Canonical Apollonian subdivision
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Lacunary structures

Canonical Apollonian subdivision
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Lacunary structures

Canonical Barycentric Subdivision
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Lacunary structures

Canonical Barycentric subdivision
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Lacunary structures

Canonical Barycentric subdivision
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Lacunary structures
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Lacunary structures
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Lacunary structures
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Lacunary structures
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Lacunary structures

Figure of Gilles Gouaty

This lacunary structure can be obtained by taking the complementary of a Polytopal

Sphere Packing of a Canonical Barycentric Subdivision of a hypertetrahedron 35/35
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