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In this talk

We will provide:

~+ simple formulae for curvature estimations.
~~ stability results

~» Can handle different geometries
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In this talk

We will provide:

~+ simple formulae for curvature estimations.
~~ stability results

~» Can handle different geometries

Key ingredients:
» normals “good” ~- curvatures good.
» normal cycle ~ general stability results
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Curvature measures : Weyl's formula (1939)

Tube’s formula: Let M C R? be a C? hypersurface in R without
boundary and t < reach(M). Then the volume Vol(K") is a polyno-

mial in ¢:
Vol(V") = Vol(V) + Area(M)t + fM p)dp t? + fM p)dp £
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Curvature measures : convex case

Steiner’s formula: Let X C R? be a convex polyegon and r > 0.
Then the volume Vol(K") is a polynomial in r:
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Curvature measures : convex case

Steiner’s formula: Let X C R? be a convex polyegon and r > 0.
Then the volume Vol(K") is a polynomial in r:

In 2D
Area(K") = Area(K) + length(0K)r + 7r?

n 3D “mean curvatug”‘ 'Gfuss curvature

Vol(K") = Vol(K) + Area(dK)r r? o

~ normals are central
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Curvature measures

» Introduced by Federer en 1958
» A set K has positive reach 7 > 0 if every x € K" has a unique
closet point px(x) on K
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» Introduced by Federer en 1958
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closet point px(x) on K

Definition The curvature measures for sets with positive reach are
the coefficients coef; for any ball B C R?
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Curvature measures

» Introduced by Federer en 1958
» A set K has positive reach 7 > 0 if every x € K" has a unique

closet point px(x) on K

Definition The curvature measures for sets with positive reach are
the coefficients coef; for any ball B C R?

Vol(K* ﬂpf_(l(B)) = Vol(K) + coef; t + coefy t? + coefs g
P 7 ™
ua(B)  pH(B) pnG(B)

‘-.M(K)

Sets with > 0 reach
- contains C? manifolds, convex sets

- does not contain meshes, digital
shapes




Normal cycle

» introduced by Wintgen in 82's to generalise curvature measures
[Zahle 86, Fu92, Cohen-Steiner & Morvan 03, etc]

» The idea is to integrate differential forms over unit normal bundle
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Normal cycle

» introduced by Wintgen in 82's to generalise curvature measures
[Zahle 86, Fu92, Cohen-Steiner & Morvan 03, etc]

» The idea is to integrate differential forms over unit normal bundle

Let M be a C? surface of R?.
~» we consider the normal space spt(N(M)) = {(p,n(p)), p € M}

~ spt(IN(M)) is a 2-dimensional surface in R? x S?

~» We integrate the Lipschiz-Killing 2-forms : €2, wa, wy, wa

Proposition. Let B C R3 a ball

/ wa = Area(M N B)
spt(N(M))N(B xS?)
/ WH = / H(p)dp
spt(N(M))N(B xS?) MnNB
vo= [ Gw)dp M
spt(IN(M))N(BxS?) MNB
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Normal cycle

» introduced by Wintgen in 82's to generalise curvature measures
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~ build a normal cycle N(M,u) “corrected” by wu.
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Corrected curvature measures

Main idea:
Given a 2d non-smooth manifold M and « : M — S2 normal vector field

~ build a normal cycle N(M,u) “corrected” by wu.

normal cycle corrected normal current

~~ We define the “corrected” curvature measures
Area : ,LLA(B) <N(M u)|B,wA>
Mean : ug(B) = (N(M,u)p,wh)
Gauss : uc(B) = (N(M, u)y.wc)
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Corrected curvature measures

Main idea:
Given a 2d non-smooth manifold M and « : M — S2 normal vector field

~ build a normal cycle N(M,u) “corrected” by wu.

A
ff_ 3 V

normal cycle corrected normal current

e
S
7
o
o
1
.

&~

~~ We define the “corrected” curvature measures
Area : ,LLA(B) = <N(M, u)|B,wA>
Mean : ig(B) = (N(M,u) 5, wir)
Gauss : 1 (B) = (N(M,u) 5, wc)

2.4 ~ also applies to second fundamental " measures”



Corrected curvature measures

Formula:

-~

e2 /

Generic case: S piecewise C1*, u differentiable per face

e :=u; X U2/||U1 X U2||
V.= Zul,UQ

e := tangent to edge

u2"(B) :/Bﬂs(u | n) dH? B is a ball
u#(8) = [ ((du-ef )+ (uln) (du-ex | o)) 3
+ Z/ (e|e1) dH'

2 JBnS;

S (B) :/ (du-e1 | e1) {du-ef ) —(du-ex | ) (du- el o) da?
BNS

— Z/ tan g(”; +u; | der - e)dH" + Z AArea(NC(p,u)).
BNS;

i#f peBNVtx(S)
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Corrected curvature measures

X digital surface S noisy digital surface S
Theorem [Lachaud, Romon T, DCG 22]

Let X be a compact surface of R3 of class C?, of normal vector n, bounding a
volume V, and S = U;S; be a piecewise C*'* surface bounding a volume W, u
a corrected normal vector field on S.

» ¢ :=du(S, X) < reach(X) is the position error.
> n:=sup,cs |lu(p) — n(mx(p))|| is the normal error,

Then the corrected curvature measures of (S, u) are close to the curvature

measures of X. More precisely, for any connected union B = U;¢,S; of faces S;
of S, one has

12" (B) — pk (mx(B))| < K(Lu, BN S, comb(B N S))(e + ),

where L, := max. Lipschitz cst. of u per face and variation of u across edges.



Corrected curvature measures

X digital surface S noisy digital surface S
Theorem [Lachaud, Romon T, DCG 22]

Let X be a compact surface of R3 of class C?, of normal vector n, bounding a
volume V, and S = U;S; be a piecewise C*'* surface bounding a volume W, u
a corrected normal vector field on S.

» ¢ :=du(S, X) < reach(X) is the position error.
> n:=sup,cs |lu(p) — n(mx(p))|| is the normal error,

Then the corrected curvature measures of (S, u) are close to the curvature

measures of X. More precisely, for any connected union B = U;¢,S; of faces S;
of S, one has

12" (B) — pk (mx(B))| < K(Lu, BN S, comb(B N S))(e + ),

where L, := max. Lipschitz cst. of u per face and variation of u across edges.
3.3 ~+ also CV result for pointwise curvatures on digitzed shapes



Corrected curvature measures on meshes

To make faster computation on meshes/voxelised shapes:
» Remark 1: If u is continuous, no term above vertices.

""""

normal cycle corrected normal current
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Corrected curvature measures on meshes

To make faster computation on meshes/voxelised shapes:
» Remark 1: If u is continuous, no term above vertices.
» Remark 2: If u is linear above each triangle, easy formula

Lipschitz-Killing
differential form (area)

Area measure [,tl(lo)(z') = J F:!;

(1

1l p1—t
P,
=J J det (u,—,—x) dsdt
0 Jo os Ot

= E(l_l | (Xj — X;) X (X — X))

with Ul := (0; + w; + u)/3

9.3 [Lachaud, Coeurjolly, Romon T, SGP 20]



Corrected curvature measures on meshes

To make faster computation on meshes/voxelised shapes:
» Remark 1: If u is continuous, no term above vertices.
» Remark 2: If u is linear above each triangle, easy formula

1,
Area measure yﬁo)(r) = 5(“ | (x; — X;) X (X — X))

Mean curvature measure

0= ra

T

= S0 ] —w) XX+ (u; — ) XX+ (W — uy) X X;)

Gaussian curvature measure

(@) = [ Mo
IT _
= 5(11 | (uj — lli) X (uk - ui)>

9.4 [Lachaud, Coeurjolly, Romon T, SGP 20]




Corrected curvature measures on meshes

To make faster computation on meshes/voxelised shapes:
» Remark 1: If u is continuous, no term above vertices.
» Remark 2: If u is linear above each triangle, easy formula

Stability theorem for measures

Let S a compact surface of R3, C? smooth, without boundary
Let M a compact mesh without boundary, with u linearly interpolated
e :=dy(S, M) < reach(S)/2 “position error”

7 := sup ||lu(x) — n(zy(x))|| “normal error”
xeM
Then

ﬂ}:},u(B) — ﬂg(ﬂS(B)) < K(¢+mn) (for all measures k)

where B is union of triangles of M, and K depends on Area(B), Length(adB),
Lipschitz constant of u, max curvature of S.

9.5 [Lachaud, Coeurjolly, Romon T, SGP 20]



Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology

10 -1



Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology

!
Lttt
\\,&t& tzf
(X; Wy)i=1 . N

Local neighborhood
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Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology

(X Wpiz1 . w /.,}
: /|
Local neighborhood v_

Random triangles
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Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology
/ﬁr -
t<’o »
4, ®

(l)(TL)

't 1
i
(X;, u.)z 1..N \é//.,j

Random triangles
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Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology
1@
t< (Tl) Z curvature measures
triangles

(l)(TL)

\p& f;

(X u)z—l...N /ui
: /
Local neighborhood v_

Random triangles
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Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology

t</°/ ﬁt Z curvature measures
[ 0 i
)~ lul(l )(Tl) triangles

i
Y

(X W1, N //.,} Z area measures
>
Local neighborhood V___ ,U(O)(TL) triangles
u

Random triangles
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Corrected curv. meas. on oriented point sets

Key idea:
measures do not need consistent mesh topology
t<,/ & Z curvature measures
u "
- lul(JO)(Tl) triangles

— — curvature at e

'&
‘3& 7
Y area measures

(X u)l—l...N //ui
Local neighborhood \/__ (O)(TL) triangles

Random triangles
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Corrected curv. meas. on oriented point sets

Selection of triangles

« Neighbours of X: either K nearest or within Ball(X, o)

» Choose a strategy to build L triangles within

CNC-AvgHexagram - CNC-Hexagram
2 triangles with average nearest points 2 triangles with nearest points

[Lachaud, Coeurjolly, Romon T, Labart, SGP 23]
10- 8



Results

Figure 1: Our new technique uses corrected curvature measures on (quasi-)random triangles to estimate differential quantities on point
clouds: stable and accurate estimations (mean curvature here) are achieved with few neighbors (50) and triangles (2).
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Results

Method
. ~ —  CNC-Unif
Accuracy and timings (mean curvature) — (oo
—— CNC-Avg-Hexagram
[_QN_Q:AVQ_Hexagr_am ][CNC-Uniform ASO [ JetFitting ] —— JefFitting
—— CNC-Hexagram
10° fs. 3 N I W e
i‘:i-;m'1 e - ~ A
E s g .
) —— T P g 10
% 107 B ™ L
c g — 2
° E 4o -—= 20
S 107 .
g ........ 50
T
1" [CNC-Hexagram }— 10-1_* —— 200
0 50 100 150 200 250 300 0 50 100 15£ 200 250 300
K

- Goursat shape : N € {10000,25000,50000,75000,100000}, o, o € {0,0.1,0.2}
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Conclusion

12

» Handle different geometries : digital, meshes, point sets
» Theoretical stability in the presence of noise

» For point sets, local computations, without reconstruction, paral-
lelizable.

» Fast and accurate compared to state-of-the-art

Thanks |

O https://github.com/JacquesOlivierLachaud/PointCloudCurvCNC



